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Abstract

Correlation-based matching methods are known to be very expensive when used on large image
databases. In this paper, we will examine ways of speeding up correlation matching by phase-
coded �ltering. Phase coded �ltering is a technique to combine multiple patterns in one �lter by
assigning complex weights of unit magnitude to the individual patterns and summing them up in
a composite �lter. Several of the proposed composite �lters are based on this idea, such as the
Circular Harmonic Component (CHC) �lters and the Linear Phase Coe�cient Composite (LPCC)
�lters.

We will consider the LPCC(1) �lter in isolation and examine ways to improve its performance
by assigning the complex weights to the individual patterns in a non-random manner so as to
maximize the SNR of the �lter w.r.t. the individual patterns. In experiments on a database of 100
to 1000 edge images from the aerial domain we examine the trade-o� between the speed-up (the
number of patterns combined in a �lter) and unreliability (the number of resulting false matches)
of the composite �lter. Results indicate that for binary patterns with point densities of about 0.05
we can safely combine more than 20 patterns in the optimized LPCC(1) �lter, which represents
a speed-up of an order of a magnitude over the brute force approach of matching the individual
patterns.
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1 Introduction

An important function of current and future image databases is content-based retrieval. This is the

capability of retrieving (parts of) images based solely on their image properties, without using any

external textual or numeric labels attached to them. Not only does this avoid a time-consuming

human involvement in the labeling process, but it also allows queries based on spatial con�gurations

of patterns, which cannot easily be described in words.

Image matching in very large databases poses challenges in addition to the limitations of the

particular matching method used. A brute-force method which matches a query pattern exhaus-

tively against all possible image locations can be quite successful on a small number of images,

but does not scale well when used on very large image databases. One way to achieve scalability

is to apply inexpensive matching methods �rst, using statistics of di�erent features in the images,

in order to select from the vast number of images a subset likely to contain the desired match

(see [8], for example). On this subset, more elaborate matching methods can be used, such as

graph-matching or correlation-based methods.

Another way to improve on the brute-force approach is to speed up the computations associated

with the elaborate matching methods themselves. We will take this approach here and consider

ways of speeding up correlation matching by combining multiple patterns into one �lter. Matching

is then done in \parallel", using the composite �lter instead of the individual patterns, resulting in

a constant speed-up factor. Such a technique can be used, for example, to detect patterns invariant

under a certain transformation (e.g. rotation, scale, projection), by storing di�erent transformations

of a reference pattern explicitly in the �lter. The target patterns can also be unrelated; in other

words, the technique is also applicable in cases where we match a given pattern against a collection

of unrelated images.

An interesting technique for building composite �lters is phase coding [5, 7]. It assigns to each

target pattern a complex weight of unit magnitude (a phase). The composite �lter is simply the

sum of the patterns weighted by their phases. The underlying principle of phase coding is that if

the phases are distributed uniformly over the unit circle, noise will excite all target patterns equally

and the complex terms of the �lter will cancel out. If one of the target patterns is presented to the

�lter, the response of the �lter will be biased in the direction of the phase assigned to that pattern.

This case can thus be detected by inspecting the magnitude of the �lter response. The phase of

the response vector will be indicative of the target pattern responsible for the match.
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In this paper we will consider a particular phase coded �lter called LPCC(1) [5]. We derive the

SNR for this �lter, based on a noise model assuming binary patterns. Unlike previous approaches

to phase coding, we assign the phases to the target patterns so as to maximize the SNR of the

composite �lter. In particular, the phase assignment is such that similar patterns are assigned

similar phases in order to avoid cancellation e�ects in the �lter response.

The organization of this paper is as follows. Section 2 covers the LPCC(1) �lter and related

work. Section 3 deals with the de�nition and derivation of the SNR. In Section 4 we discuss the

phase assignment problem. Section 5 describes the experiments; the conclusions are contained in

Section 6.

2 The LPCC(1) Filter and Related Work

Several techniques have been proposed to recognize patterns in images under various transforma-

tions such as rotation and scale [1, 3, 9]. Here we will restrict ourselves to techniques which are

based on phase coding, such as the Circular Harmonic Component (CHC) �lters [7] and the Linear

Phase Coe�cient Composite (LPCC) �lters [4{6].

The CHC �lters [7] are designed to handle rotational invariance by converting a pattern from

Cartesian to polar coordinates. In its polar representation, a pattern s(r; �) is periodic in � with

period 2�. Thus it can be expanded into the Fourier series in � by

s(r; �) =
1X

M=�1

sM (r)ejM� (1)

where

sM (r) =
1

2�

Z 2�

0
s(r; �)e�jM�d� (2)

The function sM (r) is known as the circular harmonic component of order M . The CHC �lter

of order M is given by

fCHC;M (r; �) = sM (r)ejM� (3)

The LPCC �lter family [5] is de�ned by adding target patterns weighted by complex numbers

of unit magnitude and equi-distributed phase:

fLPCC;M (x; y) =
X
k

sk e
�j2�kM=K (4)

If the target patterns are (in-plane) rotations of a reference pattern, then the CHC and LPCC

�lters are equivalent [5]. For that case and close approximations, Hassebrook et al. [5] derive a
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general signal-to-noise model which enables them to linearly combine N LPCC �lters into a �lter

bank in an optimal way. Which LPCC �lters to choose from and how many remains an open

problem.

Unlike the CHC �lters, which were specially designed to handle rotational invariance, the LPCC

�lters can be used in a more 
exible way. They can be used to combine patterns under di�erent

transformations, such as scale, or to combine unrelated patterns together. In this paper, we examine

the performance of one of the LPCC �lters in isolation, the LPCC(1) �lter, following the work of

Carlotto [2]. The di�erence between [2] and our work is twofold. First, we will assign the phases to

patterns in a non-random way to maximize the SNR of the �lter. Secondly, the focus of this paper

will be on extensive experiments to examine the performance of the �lter on a large data set.

The LPCC(1) �lter is built by assigning target patterns si; i = 1; : : : ; K complex weights

(phases) of unit magnitude �i; i = 1; : : : ; K. The phases are assumed equi-distributed, i.e.

there exists a permutation � over the indices i such that

�i = �(i)
2�

K
(5)

Each permutation � represents a valid phase assignment. We will call the phase assignment

successive if � is the identity mapping. The LPCC(1) �lter is given by the sum of the weighted

patterns

f =
X
k

sk e
j�k (6)

The response of the �lter f to a pattern q is

r = qT f =
X
k

qT sk e
j�k (7)

To see how the �lter works, assume that q = n, a noise vector. Then

r = nT f =
X
k

nT sk e
j�k (8)

Under the assumption that noise will excite all target patterns equally strong, the terms nT sk

will be constant. Their weighted sum will cancel out or be near 0, given equi-distributed phases.

Now assume on the other hand that q = si. Then

r = sTi f = sTi si e
j�k +

X
k 6=i

sTi sk e
j�k (9)
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The response is the sum of a vector of length jjsijj
2 and phase �k , and an interference term.

Again, under reasonable assumptions, the interference term is small compared to the signal term.

For example, given sTi si = p and sTi sk = �p; i 6= k; 0 � � � 1 then

r = pej�k � �p ej�k +
X
k;i

�p ej�k = (1� �)p ej�k (10)

This means that matching a pattern q with one \stored" in the composite �lter can be detected

by examining the radius and phase of the response vector r.

Compare the above phase-coded matching approach with a simple correlation match approach.

There we match pattern q with each target pattern si; i = 1; : : : ; K separately

rk = qT sk (11)

As a general matching procedure, phase-coded matching has the same limitations as simple

correlation matching. Its advantage over simple correlation is speed. Given unit cost for performing

a simple correlation (whether it is performed in the spatial or in the frequency domain), the cost of

a simple correlation match is K, while the cost is 2 for the phase-coded approach (one correlation

for the real part and one for the imaginary part of eq. (7)). Thus the potential speed-up factor is

K=2.

In practice, the phase coded �lter is best used as an \information �lter" to select promising

solutions to the correlation match. The technique can lead to false positive and false negative

matches. A false positive match arises when pattern q matches some of the target patterns only

partially, but these target patterns happen to have similar phases, so their contributions all add

up, leading to a large response vector r. See Figure 1a. Shown is the simple correlation between a

non-target query pattern and the target patterns of a �lter. The horizontal axis corresponds to the

di�erent target patterns (denoted by their assigned phases) and the vertical axis gives the result of

the simple correlation rk. Note that although the query pattern doesn't match any of the target

patterns in particular, it matches the target patterns around phase {90 degrees slightly more than

the others. This asymmetry leads to a relative large response vector, shown by the vertical line.

This case of a false positive match can be dealt with by verifying the match locations proposed by

phase-coded matching with simple matching. There is no need to match all K target patterns at

candidate locations; the phase of the response vector (eq. (7)) can be used to limit their number.

If at the candidate location there exists a good match with one of the target patterns, the phase of

the response vector will not deviate much from the phase assigned to the matching target pattern.
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Thus, one can seek matching target patterns among the patterns with phases within a range of

the phase of the response vector, rejecting the match if the result of simple correlations is below a

threshold. This will eliminate matches such as in Figure 1a.

A false negative match is more serious and arises when pattern q matches one of the target

patterns, say sk, but it happens that there are one or more target patterns similar to sk which have

been assigned opposite phases. Pattern q will then match target patterns with opposing phases,

and their contributions in the response vector r will be attenuated, or even cancelled. See Figure 1b.

Shown is the simple correlation between a query pattern and the target patterns of the same �lter

as in 1a. In this case, the query pattern is identical to the target pattern which was assigned phase

0 degrees. Although Figure 1b shows a relative high correlation match at phase 0 degrees, the same

applies for phase 180 degrees. This results in the described cancellation e�ect which has the e�ect

that the \true" solution in 1b is ranked lower than the \false" solution in 1a, because of its smaller

response vector.

This raises the issue of which types of patterns can be used in the phase-coded approach. For

applications involving non-binary target patterns with values near an average (non-zero) value, the

interference e�ects will be major. Although the phase-coded approach still can be applied in that

case (possibly with an SNR model, as in [5]), it will not produce experimental results as good as

when used with binary patterns with relative low point-density (say 0.05). All previous experiments

[2, 5, 7] use low point-density binary data for this reason, and so will we. In the next section, we will

derive a SNR for the phase-coded �lter based on binary patterns. Interference e�ects are minimized

by a phase assignment which maximizes the SNR; see Section 4.

The domain which we will consider in this paper is image matching. One way to encode the

information present in images is with a pattern vector. In this paper, we represent an image by a

vector of pixel values; the patterns are binary and obtained from the edge map of an image. Of

course, pattern vectors can also be used to encode features in an image, such as the presence of

straight lines at various orientations. In any case, the operation of interest here is matching tem-

plates with images by correlation. There are three di�erent ways to use the phase-coded approach

(i.e. LPCC(1) �lter) [2]:

- Single Image Multiple Template (SIMT) case

- Multiple Image Single Template (MIST) case

- Multiple Image Multiple Template (MIMT) case
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The SIMT case can be used to deal with the important case of detecting transformation-invariant

patterns (w.r.t. rotation, scale, projection) in an image. Di�erent transformed versions of a reference

template are generated explicitly and combined into one or more complex �lters. Matching is then

done with the transformation-invariant �lter. The MIST case is useful in the context of image

databases, where we want to take advantage of the fact that we know the images in advance; we

can combine images together o�-line to speed up the matching with a query template on-line. The

MIMT case is a mixture of the SIMT and MIST case. Since it does not introduce any new issues

compared to the previous cases, we do not consider it in this paper.

3 SNR

Let D be the dimensionality of the pattern space. Consider �rst the case in which the binary

patterns si (i = 1; : : : ; K) are deterministic and the noise n is uniformly distributed. More precisely,

n consists of D independent binary random variables X such that p(X = 1) = �n and p(X = 0) =

1 � �n. Let Si and N be random variables denoting the �lter response to signal si and noise n,

resp. The following statistics can be derived:

E[Si] = Si =
X
k

sTi sk e
j �k (12)

E[N] =
X
k

E[nTsk] e
j �k

= �n
X
k

sTk ske
j�k (13)

E[SiS
�
i ] = E[Si]E[Si]

�

=
X
k

X
l

sTi sk s
T
i sl e

j(�k��l) (14)

E[NN�] =
X
k

X
l

E[nTsk n
T sl] e

j(�k��l)

=
X
k

X
l

(
X
i

X
j

siks
j
lE[n

inj ] ) ej(�k��l)

=
X
k

X
l

( �n
X
i

siks
i
l + �2n

X
i

X
j 6=i

siks
j
l ) e

j(�k��l)

=
X
k

X
l

( �n s
T
k sl + �2n(s

T
k sk s

T
l sl � sTk sl)) e

j(�k��l)

=
X
k

X
l

((�n � �2n) s
T
k sl + �2n s

T
k sk s

T
l sl) e

j(�k��l) (15)

V ar[Si] = E[SiS
�
i ] � E[Si]E[Si]

�

= 0 (16)
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V ar[N] = E[NN�]�E[N]E[N]�

= (�n � �2n)
X
k

X
l

sTk sl e
j(�k��l) (17)

Consider now the case in which both the signal patterns and the noise are uniformly distributed.

Assume all signals have the same distribution (Si = S). Let �s and �n denote the corresponding

parameters of the D independent binary random variables making up the signal s and the noise n.

Assume that the phase assignment is equi-distributed. Then the following can be derived, similarly

to [2]:

E[S] = D(�s � �2s) e
j�i (18)

E[N] = 0 (19)

E[SS�] = D(�s � �2s) (�
2
s(1�D) + �s(D+K � 3) + 1) (20)

E[NN�] = D(�s � �2s)K �n (21)

V ar[S] = D(�s � �2s) (�
2
s + �s(K � 3) + 1) (22)

V ar[N] = D(�s � �2s)K �n (23)

We would like to have a measure of the performance of a certain �lter f. De�ne the signal to

noise ratio, SNR(i), of �lter f w.r.t. component signal si as

SNR(i) =
E[SiS

�
i ]

E[NN�]
(24)

The overall SNR of �lter f can be based on di�erent statistics of the distribution of SNR(i) for

i = 1; : : : ; K, such as the minimum value or average value. We chose

SNR =

 
1

K
�
X
i

SNR(i)1=2
!2

(25)

For the uniform noise model, using eqs. (20), (21) and (24), we obtain a simpli�ed expression

for the signal-to-noise ratio

SNR =
�2s(1�D) + �s(D +K � 3) + 1

K �n
(26)

which for typical values of D, K and �s (i.e. �
2
s � �s, K � D), leads to the approximation

SNR =
�sD

K �n
(27)
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4 Phase Assignment

In the previous section we de�ned the SNR for the phase-coded �lter. In the uniform signal/noise

model the SNR does not depend on the phase assignment of the patterns, as long as the phases

are equi-distributed. This is because the similarity between two di�erent target patterns si and

sj , i.e. their inner-product s
T
i sj , is taken to be constant. In practice, the similarity between two

target patterns in the �lter can vary and the chosen phase assignment does in
uence the SNR, as

can be seen from eqs. (14), (15) and (24). Consider the following worst case scenario: we have

K target patterns which are rotations of a reference pattern which is point-symmetric around the

origin, using the phase assignment such that the rotated versions are assigned successive phases.

A pattern and its 180 degree rotated version will then be identical, and will be assigned opposite

phase. This will result in pairwise cancellation of the terms of the �lter response.

Of course, the case where the �lter consists of rotations of a reference pattern around its point of

symmetry occurs rarely, and could be detected beforehand. But more generally, cancellation e�ects

occur in the �lter when two similar target patterns are assigned opposite phases. [5] deals with

this case by using multiple LPCC �lters with di�erent phase assignments, increasing the matching

cost. In this paper, we examine ways to improve the phase assignment for one �lter, the LPCC(1)

�lter.

In the absence of an analytical method to �nd the optimal phase assignment of a set of K

target patterns in terms of the maximum SNF, we turn to heuristics to develop a sub-optimal phase

assignment. Note that an exhaustive search through the space of all permutations is prohibitive

for typical values of K > 10, given its size of (K � 1)! excluding cyclical symmetry. One could use

well-known AI search techniques to prune this space. A more e�cient approach is a hierarchical

one:

1. group the K patterns into M groups (4 � M � K), each group containing patterns which

are assigned successive phases.

2. assign the M groups over the unit circle

In step 1 we use similarity between patterns as the criterion for grouping. Similarity between

two patterns si and sj is de�ned in terms of their scaled inner-product:

Dist(si; sj) =
sTi sj

min(jjsijj; jjsjjj)
(28)
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The idea behind this \similar patterns, similar phases" heuristic is to avoid cancellation e�ects

in the �lter and to increase the denominator of the SNR(i) (eq. (24)). An implementation for step

1 is based on a simple iterative clustering algorithm which partitions the K patterns initially into

M groups, and shifts patterns back and forth between groups in order to minimize the sum of the

intra-cluster distances between pairs of patterns. Step 2 can now be done exhaustively over all

(M �1)! di�erent distributions of theM groups over the unit circle, for small values ofM = 4; 5; 6.

We retain the phase assignment with the maximum SNR.

So far we have dealt with the problem of how to distribute K patterns within a complex �lter.

In typical applications we are given N patterns and some decisions have to be made concerning the

number of complex �lters to represent the pattern set and how to perform the partitioning. One

simple way to partition the pattern set, without computing the N 2 cross-correlations, is to rank

the patterns according to decreasing point density and assign successive patterns to the same �lter,

until the SNR (based on the model of uniform distribution of signal and noise) falls below a certain

threshold. At that point a new �lter is assigned for the remaining pattern set. This has the bene�t

that it avoids grouping a pattern having small point density with one having large point density,

where the latter can dominate the former. If there is some a-priori information available about the

patterns, for example that they are rotated versions of one another, other heuristics can be used.

In general, more e�ort can be put into �nding a good phase assignment for target patterns if this

process can be done o�-line, prior to matching.

5 Experiments

We examined the performance of the phase-coded �lter with and without the phase assignment

algorithm. Two cases were considered: the SIMT (Single Image Multiple Template) and the MIST

(Multiple Image Single Template) case. For the SIMT case, we considered the case of combining

di�erent rotations of a reference template into the phase coded �lter and then matching it with the

image database. The MIST case involved combining di�erent (unrelated) images from the database

together and matching them with a reference template. Ten subimages, containing salient patterns

P0{P9, were extracted from the database to represent the reference templates. See Figure 4. For

both SIMT and MIST experiments, we examined the trade-o� between the speed-up (the number

of target patterns) and unreliability (the number of resulting false matches) of the composite �lter.

To do this, we ranked the match locations produced by the phase-coded �lter in decreasing order
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of size of the response vector. Then it was determined where the correct location of the reference

template was ranked. This was done for varying number of target patterns K in a �lter.

The database consisted of edge images of size 128� 128 from the aerial domain. For the MIST

case the size of the database was 1000, while for the SIMT case it was 100. The average point

density of the edge images in the database was about 0.05. See Figures 2 and 3 for 16 images

of the database and the corresponding edge maps. Correlation between template and image was

implemented in the frequency domain using the well known equivalence between correlation in the

spatial domain and multiplication in the frequency domain. That is, if f(x; y), g(x; y) and z(x; y)

denote functions in the spatial domain where

z(x; y) = f(x; y)� g(x; y) (29)

and where � denotes the correlation operator, then

Z(u; v) = F (u; v)� G(x; y)� (30)

where F (u; v), G(u; v) and Z(u; v) are the Fourier transforms of f(x; y), g(x; y), and z(x; y). Corre-

lation thus involves transforming the template and the image to the frequency domain, performing

a multiplication, and transforming the result back to the spatial domain. There are three Fourier

transforms to be performed, each with complexity O(n2 log n).

5.1 Single Image Multiple Template Experiments

The e�ects of the proposed phase assignment on the SNR of the phase-coded �lter can be seen

in Figures 5 and 6. In Figure 5, 45 rotations of the reference pattern P5 were used to construct

the �lter. Figure 5a shows the response of the �lter (eq. (12)) for the 45 target patterns and for

45 patterns at intermediate rotations between the target patterns. Figure 5b shows the expected

response of the �lter to uniform noise with densitity 0.1 (E[NN�]1=2, see eq. (15)). Figure 5c

shows the SNR w.r.t. the target patterns. The patterns are represented by their assigned phases.

The gray line indicates the un-optimized phase assignment case, where successive rotations of a

pattern are assigned successive phases. The black line indicates the optimized phase assignment.

Figure 6 shows the SNR for the patterns P0{P9. As can be expected, the SNR is higher for the

target patterns of the �lter than for patterns of intermediate rotations. This explains the oscillating

nature of the curves. For patterns P7 and P8 the phase assignment was identical to the successive
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phase assignment, resulting in the same SNR. For the other cases, clear improvements can be seen

when using the optimized phase assignment.

Now we turn to the results obtained on the dataset of 100 images. Figures 7a and 7b list the rank

of the correct location in the ranking of all potential match locations by the phase-coded approach.

The results are given for di�erent values of K and for both the successive and optimized phase

assignment. Given an average template size of 30 � 30, there are roughly 100 � 982 = 9:6 � 105

potential match locations; in the experiments we retained the top 1 � 104 (i.e. top 1%). From

Figure 7 it can be seen that matching with the optimized �lter produces some improvement w.r.t.

un-optimized version, but both versions of the phase-coded �lter actually perform very well, ranking

the correct solution consistently in the top 1%.

To evaluate the performance of the phase-coded �lter in the case that the desired pattern only

partially matches one of the target patterns, we performed the following experiment. For a �xed

K = 45, we matched all K individual target patterns with the database by simple correlation

and retained the overall best 10 solutions. These solutions all matched more than 50% of some

target pattern. Then it was determined where these solutions rank in the phase-coded ranking. See

Figure 8 for the results for the successive and optimized phase assignment. A clear improvement

is achieved by the optimized phase-coded �lter. If, for example, we regard all solutions not within

the top 50000 (i.e. top 5%) as missed, with the un-optimized �lter we miss 24 out of 100 solutions

compared to only 4 out of 100 for the optimized �lter.

5.2 Multiple Image Single Template Experiments

The database of 1000 images was compressed into M �lters using the procedure described at the

end of Section 4. The parameters used were D = 302 and SNR = 150, 100, 50 resulting in M =

74, 50, 26, or equivalently Kavg = 14; 20; 38 resp. There are roughly M � 982 locations to consider

with the phase-coded �lter. Figure 9 gives the results for the un-optimized and optimized phase

coded �lters. In this case, the gain in using the optimized phase assignment is not evident. This

is because the images are unrelated to each other so the inner product sTi sj does not vary much

among the images assigned to a �lter. Thus, unlike the situation in the previous section, we cannot

expect much improvement over random phase assignment. Observe that this is di�erent from the

case in which the images represent a video sequence, where images grouped in a �lter are related.

The results for the optimized phase assignment turn out to be even slightly worse for some patterns.

This can occur because the phase assignment is based on the global similarity of the two images.
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It is possible that two images are assigned opposite phases, but are locally similar to each other.

This is what happened in the case of P4 with K = 38. But both versions of the �lter perform very

well in retrieving the correct location of the reference template. With one exception (for K = 38),

all correct locations of the patterns P0{P9 are found in the top 5%.

6 Conclusion

We have performed experiments with the LPCC(1) �lter and an optimized version where the phase

assignment maximizes a de�ned overall SNR. Improvements are clear for the case in which the

�lter consists of rotated versions of a reference pattern. For unrelated patterns, the proposed phase

assignment can still be useful to avoid occasional cancellation e�ects in the �lter. The phase coded

technique proved successful in the case of binary patterns with low point densities (0.05). For this

case, more than 20 patterns can be safely combined into a �lter, resulting in a speed-up of an order

of magnitude over the brute force approach of matching the individual patterns.
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(a) (b)

Figure 1: (a) False positive (b) False negative

Figure 2: 16 images from the database
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Figure 3: 16 edge images from the database

(a) P0 (b) P1 (c) P2 (d) P3 (e) P4

(f) P5 (g) P6 (h) P7 (i) P8 (j) P9

Figure 4: The test patterns P0{P9
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(a) (b) (c)

Figure 5: Pattern P5: (a) Signal response (b) Noise response (c) SNR

(a) P0 (b) P1 (c) P2 (d) P3

(e) P4 (f) P5 (g) P6 (h) P7

(i) P8 (j) P9

Figure 6: SNR for test patterns P0{P9, successive vs. optimized phase assignment
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K = 15 K = 45 K = 75

P0 1 1 35

P1 1 51 40

P2 1 1 20

P3 1 1 1

P4 1 1 10000+

P5 1 3449 55

P6 1 7347 4775

P7 1 43 36

P8 1 1 1

P9 1 2 1

K = 15 K = 45 K = 75

P0 1 1 1

P1 1 19 45

P2 1 201 1199

P3 1 1 1

P4 1 2 3

P5 1 4 2

P6 1 8 4

P7 1 43 36

P8 1 1 1

P9 1 1 5

(a) (b)

Figure 7: SIMT. E�ect ofK on rank best solution: successive (a) vs. optimized (b) phase assignment

1 2 3 4 5 6 7 8 9 10

PO 1 22 6429 160 726 173 350 974 5228 5884

P1 51 50000+ 131 50000+ 11 118 1811 1472 57 50000+

P2 1 6 70 4776 5424 50000+ 2235 4414 291 2577

P3 1 119 121 26471 50000+ 14 50000+ 695 269 50000+

P4 1 3117 315 155 160 50000+ 50000+ 33737 33144 1294

P5 3449 87 451 43 50000+ 50000+ 50000+ 50000+ 822 3830

P6 7347 50000+ 50000+ 50000+ 50000+ 50000+ 50000+ 29763 50000+ 50000+

P7 43 2242 1090 3283 12315 168 27234 7058 11970 5385

P8 1 65 14 50000+ 27 9 3 10 17 2195

P9 1 2 3 11 77 33 50000+ 50000+ 2230 3550

(a)

1 2 3 4 5 6 7 8 9 10

P0 1 6 7 4 2 5 9 8 15 3

P1 19 1 14 50 40 107 438 12013 440 5

P2 201 472 719 1064 7055 13756 6590 898 685 2177

P3 1 8 2 7 3 26 10 12 31 4

P4 2 1 40 19 8131 159 8657 6996 8903 50000+

P5 4 2 3 1 20 6 26 184 44 37

P6 8 2056 2936 20 39 42 9 6 83 2

P7 43 2242 1090 3283 12315 168 27234 7058 11970 5385

P8 1 65 14 50000+ 27 9 3 10 17 2195

P9 1 2 3 11 77 33 50000+ 50000+ 2230 3550

(b)

Figure 8: Phase coded rank of top 10 solutions, K = 45: successive (a) vs. optimized (b) phase
assignment
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K = 14 K = 20 K = 38

P0 1 1 1

P1 1 1 1

P2 1 12 1

P3 1 1 1

P4 4 15 1

P5 1 1 1

P6 1 6 1

P7 141 73 3316

P8 4 235 2167

P9 2 1 46

K = 14 K = 20 K = 38

P0 26 26 10

P1 1 1 1437

P2 1 1 2

P3 1 1 66

P4 1 132 10000+

P5 10 26 26

P6 5 15 646

P7 598 316 8187

P8 1 5 7

P9 1 4 27

(a) (b)

Figure 9: MIST. E�ect ofK on rank best solution: successive (a) vs. optimized (b) phase assignment
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