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Modern cars will not only recover information about their internal driving state (e.g.
speed or yaw rate) but will also extract information from their surroundings. Radar-
based advanced cruise control was commercialized by DaimlerChrysler (DC) in 1999
in their premium class vehicles. A vision-based lanc departure warning system for
heavy trucks was introduced by DC in 2000.

This will only be the beginning for a variety of vision systems for driver infor-
mation, warning and active assistance. We are convinced that future cars will have
their own eyes, since no other sensor can deliver comparably rich information about
the car's local environment. Rapidly falling costs for the sensors and processors
combined with increasing image resolution provide the basis for a continuous growth
of the vehicle’s intelligence. At least two cameras will look in front of the car.
Working in stereo, they will be able to recognize the current situation in 3D. They
can be accompanied by other cameras looking backwards and to the side of the
vehicle.

In this chapter, we describe the achievements in vision-based driver assistance at
DaimlerChrysler. We present systems that have been developed for highways as well
as for urban traffic and describe principles that have proven robustness and efficiency
for image understanding in traffic scenes.
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6.1.1 Vision in cars: why?
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Three main reasons promote the development of computer vision systems for cars,

1. Safety

The constant improvement of vehicle safety led to a gradual decrease of injured traffic
participants all over the world. A further considerable progress will be possible with
sensor systems that perceive the environment around the car and are able to recognize
dangerous sitvations. For cxample, they will alert the driver if he is leaving the lane,
disregarding traffic signs and lights or overlooking a possible collision.

The important advantage of vision-based systems is their potential to understand the
current traffic situation, a prerequisite for driver warning or interventions in complex
situations, in particular to avoid false alarms. Today’s radar-hased systems, for example,
suppress reflections of still objects since they cannot distinguish between a small pole
and a standing car.

Slereo vision allows obstacle detection by three-dimensional scene analysis, whereas
fast classification technigues are able to recognize the potential collision partner and
to distinguish between cars, motorcycles and pedestrians. So, compuler vision offers
increased safety not only for the people inside the vehicle but also for those outside.

2. Convenience

Vision-based driver assistance systems allow an unprecedented increase in driving
convenience. Speed limit signs can be recognized by the computer and taken into
account in an adaptive cruise control (ACC) system. Tedious tasks like driving in stop-
and-go traffic can be taken over by the system as well as distance or lateral control on
highways.

3. Efficiency
Tt is obvious that less traffic accidents mean less traffic jams and less economical loss.
In addition. computer vision can be used to automate traffic on special roads or to
improve the efficiency of goods transport by coupling trucks by means of an electronic
tow-bar system. The American Advanced Highway System (AHS) programme aimed
at a throughput optimization on existing highways by reducing the vehicle spacing and
lateral width of the lanes.

Another important aspect is that in the future drivers can do other jobs like admin-
istrative work, it the truck or the car is in autonomous mode. This is of interest to all
drivers who use their car for business purposes.

6.1.2 One decade of research at DaimlerChrysler

The progress over the past ten vears of vision research for vehicle applications is
reflected in our demonstrator vehicles. The first experimental car, VITA 1, was a 7.5
ton van built 1989 as a platform for experiments within the Prometheus project. It
was equipped with a transputer system for lateral guidance and obstacle detection on
highways and offered full access to the vehicle’s actuators.

This vehicle was replaced by the well-known VITA 1l demonstrator for the final
Prometheus demonstration in Paris 1994. VITA IT was a Mercedes-Benz S-class and
showed fully autonomous driving on public highways including lane changes (Ulmer
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1994). It was equipped with 18 cameras looking in front, to the rear and to the sides
in order to allow a 360° view. Built in cooperation with Ernst Dickmanns (University
of the Armed Forces Munich) and Werner V. Seclen (University of Bochum), VITA Il
was able to recognize other traffic participants, the road course as well as the relevant
(raffic signs. In addition, it was provided with a behavioural module that was able
to plan and perform overtaking manoeuvres in order to keep the desired speed. The
side-looking and rear-looking cameras were used to ensure safety of these manocuvres.

Tn parallel to the Prometheus demonstrators, the Mercedes-Benz T-model OSCAR was
built to investigate vision algorithms and control schemes for robust and comfortable
lateral guidance on highways at high specds. The algorithms were based on the stan-
dard lane tracking approach developed by Dickmanns in a joint project. Based on the
transputer technology of the early 1990s, OSCAR drove about 10000 km on public high-
ways with maximum speeds of 180 km/h using conventional as well as neural controllers
(NeuBer ef af., 1993). OSCAR tracked not only the markings, but looked also for struc-
turcs parallel to the lane. From the algorithms used in this car the lane departure warning
system mentioned in the introduction has been derived (Ziegler ef af.. 1995).

In 1995, Daimler-Benz finished the work on the OTTO-truck (Franke et al., 1993).
With the AHS-idea in mind, this truck was designed to follow a specific leader with
minimum distance. To accomplish this task, OTTO measured the distance to the vehicle
in front by looking at known markers. An infrared light-pattern was used as well as two
checker-board markings. In order to reach minimum distance and to manage emergency
braking of the leader, the acceleration of the leader was transferred to the follower
by means of a communication link. Recently, OTTO has been replaced by a heavy
duty truck (40ton) within the European Chaufleur project. lnvestigations revealed an
increased throughput on highways and a reduced fuel consumption of 10-20 per cent
depending on the mass of the trucks.

The UTA project (Urban Traffic Assistant) aims at an intelligent stop-and-go system
for inner-city traffic. At the Intelligent Vehicles Conference 1998, our UTA I (Mercedes-
Benz S-class) demonstrator performed vision-based vehicle following through narrow
roads in Stuttgart (Franke et al., 1998). Recently. this car has been replaced by UTA
Il (Mercedes-Benz E-class), which uscs standard Pentium [T processors instead of
PowerPCs and has increased image understanding capabilities. Details on this project
and the developed techniques are given in Section 6.5.2.

6.1.3 A comprghensive driver assistance apprqa;h_

A vision-based system should be able to assist the driver not only on the highway, but
in all traffic situations. It is our goal to realize such a comprehensive system. Here is
our vision:

Imagine you are driving to an unknown cily to meet a business partner. From the
beginning of your trip the vision system acls as an attentive co-driver. You will be
warned of the bicyclist from the right, that you have failed to recognize. At the next
intersection, it will save you [rom a possible rear-end collision if you are distracted.

On the highway. the car is able to take over control. Steering is based on the reliable
recognition of lanes, longitudinal control exploits stereo vision to improve the radar
system and takes into account the speed limit signs. If you prefer driving yourself, you
still get this information as a reminder.
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Near your destination you get stuck in a slowly moving tailback. The car offers you
automated stop-and-go driving. This means that it is able to follow the vehicle in front
of you longitudinally as well as laterally. This behaviour is not purely reactive. Traffic
lights and signs arc additionally taken into account by your intelligent stop-and-go
system. Driving manually, the system is able to warn you if you have overlooked a
red traffic light or a stop sign. Crosswalks are detected and pedestrians that intend to
cross the road are recognized. Finally you reach your destination, The small parking
lot 1s no problem, since you can leave your car and let it park itself.

6.1.4 Outline of the chapter
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This chapter describes our work at DaimlerChrysler Research towards such an inte-
grated vision system. It is outlined as follows: Section 6.2 describes the capabilities
for the highway scenario developed within the early 1990s including lane and traffic
sign recognition and presents improvements by sensor fusion. Section 6.3 concen-
trates on the understanding of the urban environment. Stereo vision as a key to
three-dimensional vision is described. A generic framework for shape-based object
recognition is presented. Section 6.4 regards object recognition as a classification
problem. Various methods for the recognition of the infrastructure as well as the recog-
nition of cars and pedestrians are presented. All modules for the urban scenario have
been integrated in the UTA I demonstrator. A multi-agent software system controls
the perception modules as described in Section 6.5.

In 1986, when Ernst Dickmanns demonstrated autonomous driving on a closed German
highway with a maximum speed of 96 km/h, a revolution in real-time image sequence
analysis took place. Whereas other researchers analysed single images and drove some
metres blindly before stopping again for the next picture, he exploited the power of
Kalman filtering to achieve a continuous processing. Only a small number of 8086
processors were sufficient to extract the information necessary to steer the car from
the image sequence delivered by a standard camera, With this new idea adopted from
radar object tracking, he influenced the field of image sequence analysis strongly.
Today. Kalman filters are considered as a basic tool in image sequence analysis.
This first successfully demonstrated application of computer vision for vehicles was the
starting shot for a quickly increasing number of research activities. During the following
ten years, numerous vision systems for lateral and longitudinal vehicle guidance, lane-
departure warning and collision avoidance have been developed all over the world.
This chapter presents systems for highways, which have already left their infancy
and have been tested on many thousands of kilometres on European highways, It
starts with classical lane recognition and explains the basic idea of Kalman filter based
parameter estimation. Possible extensions are described that are under investigation for
higher robustness. Important for future advanced cruise control and driver information
systems is the knowledge of the current speed limit. A robust traffic sign recognition
system is described in Section 6.2.2. It can easily be extended to other scenarios like
urban traffic.
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6.2.1 Lane recognition -

Principles

The estimation of the road course and the position of the car within the lane is the basis
for many applications, which range from a relatively simple lane departure warning
system for drowsy drivers to a fully autonomously driving car. For such systems the
relevant parameters are the same as for a human driver: the curvature of the road ahead
and the position of the car within the lane, expressed by the lateral position and the
yaw angle.

The idea of most realized vision-based lanc recognition systems is to find road
features such as lane markings or road surface textures that are matched against a
specific geometrical model of the road (e.g. Kluge and Thorpe, 1992; Dickmanns,
1986). Using these, the parameters of the chosen model and the position of the car in
the lane are determined, for example using least-square fitting, However, processing
every single image independently is not very smart. A much better way 1s to lake
the history of the already driven road and the dynamic and kinematic restrictions of
vehicles into account, especially when driving at higher speeds.

According to the recommendations for highway construction, highways are built
under the constraint of slowly changing curvatures. Therefore, most lane recognition
systems are based on a clothoidal lane model, that is given by the following equation:

e(ly=cp+cy xL (6.1)

c(L) describes the curvature at the length £ of the clotheid, ¢y is the initial curvature
and ¢; the curvature-rate, which is called the clothoidal parameter. The curvature is
defined as ¢ = 1/R, where R denoles the radius of the curve. As already mentioned,
the vehicle’s position within the lane can be expressed by the lateral position X in
the lane and the yaw angle A relative to the lane axis.

Assuming the pinhole-camera model and knowing the camera parameter’s focal
length [, tilt angle @ and height-over-ground H, the relation between a point on a
marking and its image point P(x, y) can be described by the following cquations:
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w is the lane width and a = £0.5 is used for the left or the right marking, respectively.
Hence, every measurement is projected onto a virtual measurement directly on the centre-
line of the lane. In all equations, the trigonometrical functions are approximated by the
argument (sinx = x, tanx = x), because we consider only small angles. These equations
allow the relevant road course and vehicle position parameters to be determined.
Driving at higher speeds, dynamic and kinematic restrictions have to be taken into
account. These constraints can be cxpressed by the following differential equations:
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In these equations, v denotes the longitudinal speed of the vehicle, v, the lateral speed
caused by a possible side slip angle and tj,rq;,_,h the yaw rate. », and Q‘fm;, are measured
by inertial sensors,

The integration of the above described models in the lane recognition system is
donc by means of a Kalman filter as first proposed by Dickmanns (1996). With this
optimal linear estimation scheme, it is possible to estimate the state vector, i.c. the
relevant model parameters. The Kalman filter is a recursive observer that uses the
actual measurements to correct the predicted state (see e.g. Bar-Shalom and Fortmann,
1988).

Each cycle of the estimation process consists of two phases:

L. Prediction phase. Using the model of the system behaviour (in this case described
by the differential equations (6.3), the state-vector estimated al time # is propagated
to the next time step 7 + 1. With the above given measurement equations (6.2), one
can estimate the positions of the markings in the next time step.

2. Update phase. Depending on the predicted state and the actual measurements a new
state of the system is calculated such that the estimation error is minimized.

It is common to search for marking positions inside small parallelogram shaped regions
only. They are placed in the image according to the predicted positions. 1D-signals
are obtained by integrating the intensity within these windows parallel to the predicted
direction. The marking positions are found by analysis of these signals.

By calculating the expected measurement error variance, the size of the regions in
which to search for markings can be minimized. The so-called 3o-area describes where
lo find about 99 per cent of all measurements, it a gaussian noise process is assumed.
As can be seen in Figure 6.1, the 3o-area (the horizontal lines) significantly reduces
the search range. This leads to a fast and robust lane recognition system because
false-positive markings are not analysed.

The system described above is based on the assumption that the road in front of the
car is flat. Finding markings on both sides of the car, it is possible to estimate the tilt

Fig. 6.1 The lane recognition system under rainy conditions, showing the tracked markings with found
measurements, the predicted centreline of the lane and one tracked radar obstacle in front.
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angle @ and the lanc width w in addition to the other parameters. Mysliwetz (1990)
even cslimates the vertical curvature assuming a constant lane width.

Sometimes problems occur because ‘markings’ are falsely found on cars cutting in
or crash barriers within the 3o-area, because they cannot be separated by using only a
monocular camera. This violates the systemn, causing a wrong state estimation.

These problems can be solved using stereo information, delivering threc-dimensional
information for each point on the markings. Tt allows (o estimale the vertical curvature
¢, besides the already mentioned lane width w and the tilt angle o without further
geomelrical constraints. German highways are designed according to a parabola vertical
curvature. The horizontal and vertical curvature models are separated. The parabola
curvalure is approximated using a clothoid as described in Mysliwelz (1990):

gLy =1ty iy % L (6.4)

Besides a higher accuracy in all measurements, sterco vision allows the discard of
all measurements of non-road objects, that lie above ground. This leads to a more
reliable system.

Applied lane recognition
Lane keeping A couple of years ago, our test vehicle OSCAR required about ten
transputers for monocular lane recognition at a cycle rate of 12.5 Hz. Today, the job is
done with improved performance in less than 2 milliseconds on a 400 MHz Pentium
LI. An optimized nonlinear controller allows comfortable driving at high speeds. Since
the car is often driven by non-experts, velocity is limited to 160 km/h at the moment.
Field tests revealed a high degree of acceptance for two reasons. First, the handling
is very simple. When the car signals its readiness, you have just to push a button to give
the control to the car. Whenever you like, you can gain the control back by pushing
the button again or just steering. Second, autonomous lateral guidance is surprisingly
precise. Figure 6.2 shows a comparison of manual and autonomous driving at the same
speed on the same section of a winding highway. Although the human driver was told
to stay in the middle of the lane as precisely as possible, he needed about 40 centimetres
lateral space to both sides, which is typical. As can be seen, Lhe autonomous vehicle
performed significantly better. The stronger oscillations between 50 and 90 seconds

Human driver W =120 kmih Controller
QiR et 3 S — 05, —— S

»
i1 .
|

Fioro el
b -1“ ! A

o T 1 |
.ir__ - (:'. ”‘ ""hf... - b ARG S ;...I—. |
0 ; mi "\rrﬂ.ﬁ!f_._ filt 2 1; f : o KT |

- + . ) i e, I.'. 1

o

D -
=
|
|
|
Offset (m)

I
S Ve

Time () Time (s}

Fig. 6.2 Comparison of human lateral guidance and controller performance on a windy highway.
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of driving stem from the tendency of the controller to cut the curves, which have a
radius of about 500 metres. In accordance with human behaviour this deviation to the
centreline is accepted.

Lane departure warning  Many accidents occur due to inattentiveness or drowsiness
of the driver, particularly at night. Two types of accidents dominate: rear-end collisions
and leaving the lane.

A reliable lane departure warning would thercfore lead to a significant increase
in traffic safety and is of special interest for trucks and busses. Based on the above
described methodology, we have realized an optical system that has been commercially
available since May 2000. Leaving the lane without indicating the lane-change, it warns
the driver acoustically by means of a rumble strip like sound from the left or right
loudspeaker. Naturally, the direction depends on the marking the vehicle is crossing.
Camera and processor are integrated in a small box that fits into a palm.

In order to achieve maximum availability and a minimum number of tfalse alarms,
the camera is mounted 2-3 metres above ground with a large tilt angle. This maximizes
the robustness of the image processing since glare due to a low sun or reflections due
to a wet road are avoided. Since the warning system has to be operational on all roads
outside built-up areas and only the lateral position of the vehicle is of interest, the road
is assumed to be straight. Thus only offset and yaw angle are determined in the estima-
tion process. The error introduced by this assumption is negligible since the maximum
look-ahead distance is smaller than 10 metres to guarantee optimal performance at
night.

Advanced lane recognition
The traditional lane recognition system described above runs robustly and reliably under
fair weather conditions. Problems occur when driving in adverse weather conditions
such as rain or snow. Oflen, the contrast between the markings and the pavement
is poor, sometimes the colours of the markings look negated. The range of sight is
reduced enormously, causing a bad prediction of the lane parameters, especially the
curvature.
A significant improvement of the reliability of the lane recognition system is possible
by integration of other sensors that offer a better availability in darkness, rain and snow.
We are invesligating two different systems using:

e radar information
e a GPS-based map information system.

a) Radar information  DISTRONIC is a radar-based adaptive cruise control system
which was introduced in the Mercedes-Benz S-class in May 1999. Tt measures the
following three parameters for every radar obstacle i:

1. The distance dqp;,.
2. The relative speed vy, by -
3. The angle @gp;,.

Our approach for improved lane recognition using radar information, as first described
in Zomotor and Franke (1997), is motivated by the human strategy when driving in bad
weather conditions. Human drivers use the cars in front in order to estimate the road
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course, assuming that these cars stay in their lanes without significant lateral motion.
Such a situation is shown in Figure 6.1.

In fact, every car in front contains strong information on the road curvature that
can be used in the estimation process. If we track the vehicles, we can extract these
parameters from the measured distance and angle over time. The basic assumption
that the lateral motion of the leading vehicles relative to the lane is small can be
expresscd by:

icﬂ'l}ohj,— =0 (65)

Large lateral motion caused by lane changes of the tracked vehicles can be detected
by appropriate (ests.

The radar measurements are incorporated in the Kalman estimation by an additional
measurement equation given by:
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The lateral offsct xq, of each radar obstacle i is related to the measured angle @op;, via
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Getling raw data from the radar sensor, an adequate kinematic model of the obstacles
is given by the differential equations:

dnhj, = Urel,obj;

| 6.7)
Urel.obj; = 0

As can be seen in Figure 6.1, the range of sight can be enormously enlarged using radar
obstacles, Particularly the curvature parameters ¢o and c) are improved significantly.

The improvements of the fusion approach can be seen best in simulations as shown
in Figure 6.3. The graph shows the curvature ¢y of a simulated road as obtained from
the lane recognition system under good weather conditions (range of sight about 50 m)
as reference curve, the lane recognition system under bad visibility (range of sight
about 10—14m) and the sensor fusion system following one and two cars under bad
visibility (range of sight again about 10—14 m). The distance to the cars in [ront is
about 60—80 m.

The road consists of a straight segment, going into a right bend ot radius 300 m and
again a straight road. The curvature estimation is improved enormously taking other
cars into account. Looking closer at the diagram, it can be seen that the radar-fusion
estimates of the curvature run ahead of the lane recognition system. This effect can be
explained by the other cars going carlier into the bend than one’s own car. The same
offect can be seen between 320 and 400 m, where the cars in front are already going
out of the bend. The pure lane recognition system under bad visibility shows a delay
in the curvature estimation due to the small range of sight. The detailed results are
presented in Gern er al. (2000).

Assigning cars to specific lanes is an important task for ACC-systems. Since we
observe the lateral position of the leading vehicles relative to our lane, this assign-
ment is simultaneously improved by the described approach. This avoids unwanted
accelerations and decelerations.
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Fig. 6.3 Curvature estimated under bad weather conditions.

The fusion approach assumes that the radar measurements coincide with the centre
axes of the cars. Unfortunately, the radar often detects the edges of an obstacle and
not the middle axis. Sometimes it is sliding between the left and the right.

It is obvious that the run of the curve can’t be cstimated correctly if the radar
delivers imprecise estimations of the positions of the vehicles. One consequence is
that the measurcment for every radar obstacle has a large variance. This weakens the
strong informaton obtained by using radar information to increase the range of sight
for the lane recognition system.

[n order to solve this problem, we are developing a system that detects and tracks
all radar obstacles in monocular images. A detailed description of this approach can
be found in Gern et af., 2000.

b) GPS-based map information svstem  The second approach to enhance the robust-
ness of the lane recognition system is Lo integrate GPS-based map information.

Since precise maps are not available at the moment, we generale our own data.
During the generation phase, the road course is recorded. Using the optical lane recog-
nition system and a highly accurate GPS-system, the centreline of the lane is determined
to gencrate the necessary highly accurate map.

Later, when driving on this road, the lane recognition system can exploit the map
information, especially in adverse weather conditions. The GPS-based map system
provides the before measured centreline, describing the road course. This includes the
curvature and the clothoidal parameter as well as a number of road points.
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We are investigating two different fusion approaches, extending the already described
Kalman filter:

1. Using the curvature cy and the clothoid parameter ¢, provided by map information
system directly as measurements in the lane recognition system.

2. Using the world coordinates of the centreline given by the map information system
directly as measurements using an adequate measurement equation.

Simulations and (est drives show a higher accuracy of the curvature and yaw angle
estimation for both approaches, even if the accuracy of the map information system is
low. Results are comparable to those obtained by fusing radar obstacles.

622 Traffic s_ign recognition (TSR) -

For the foreseeable future visible road signs will regulate the traffic. If vision systems
are to assist the driver, they have to be able to perceive traffic signs and observe the
implied rules.

Let us first characterize the nature of this object recognition task for a vision based
system.

1. Traffic siens are man-made objects and standardized according to national law.
Shape and colour are chosen such that they can be easily spotted by a human
ohserver. Both facts alleviate the perception task also tor a machine vision system.

. Traffic signs mounted on sign posts or on bridges spanning the road may have high
contrast against the sky. A vision sensor must cover a large dynamic range to make
the sign clearly visible in the image. Poor visibilily affects the system performance
not less than that of a human driver.

3. A large family of traffic signs denote road attributes such as speed limits, which
are valid inside a continuous interval, in a discontinuous way. One sign marks
the beginning, and another sign the end of the interval. While we can apply an
initialization and update process for tracking lanes or for following cars, here we
have to scarch all the aequired images for new appearances of traflic signs in an
exhaustive way. Since we do not know a priori where to expect traffic signs, this
task will bind a considerable amount of computing elfort if we do not want to miss
a single sign, even driving at high speeds.

&

Of course there exist non-vision approaches to that problem. Road signs equipped with
IR or microwave beacons signal the information regardless of visibility conditions but
at high infra-structural costs. Digital maps attributed with traffic regulations supply the
correct information only if they are up to date. Temporary changes due to road work,
accidents, or switching clectronic signs cannot be easily integrated into a map. Thus
we are convinced that vision is an essential part of the solution.

The scope of traffic signs handled by the TSR module depends on the range of
operation. For a highway scenario useful applications can start with a small sct of signs,
including speed limits, no overtaking, and danger signs. The urban scenario described
in Section 6.3 requires the set to be extended by adding signs which regulate the right
of way at intersections.
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Detection

On highways. the TSR module is confronted with high resolution images acquired at
high velocities of the vehicle. The key (o a real-time traffic sign recognition system is
a fast and robust detection algorithm. This algorithm detects regions which are likely
to contain traffic signs. The traffic sign candidates will be tracked through the image
sequence until a reliable result can be obtained. This allows the recognition process to
focus on a limited number of small search arcas, which speeds up the whole process
significantly.

The detection stage can exploit colour and/or shape as the first cue for traftic sign
hypotheses. The shape matching algorithin described in Section 6.3.2 is used for traffic
sign detection when colour is not available from the camera.

For example, we will here elaborate on a detection algorithm which relies on the
colour of wraffic signs. The advantage of colour cues, in contrast to shape, is their
invariance against scale and view and their highly discriminative power. Even partially
occluded or deformed traffic signs can be detected using the colour information.

The algorithm consists of the following three principal steps (Janssen, 1993):

1. In the first step the significant traffic sign colours are filtered out from the acquired
colour image. As a result of the colour segmentation the pixels of the image are
labelled with the colours red, biue, yellow, black, grey and white.

2. In the second step the iconic information is transformed to a symbolic description
of coloured connected components (CCC) by applying a fast connectivity analysis
algorithm (Mandler and Oberlinder, 1990).

3. Finally the CCC databasc is queried for objects with certain geometrical attributes
and colour combinations. Ensembles of CCC objects extracted by those queries are
called meta CCC objects. Meta CCC objects serve as hypotheses for the subsequent
traffic sign recognition process.

Colour segmentation  The task of colour segmentation is to mimic what the human
observer does when he or she recognizes a specific red as ‘traffic sign red’. The visual
system seems (o have a strong concept of colour constancy which enables recognition
of this certain red although the colour description covers a wide range of different hues,
These hues are influenced by the paint, the illumination conditions, and the viewing
angle of the observer. Since the current knowledge is not adequate to model all facets
of colour perception, a learning approach was chosen to generate colour descriptions
suitable for the machine vision system.

The mapping from the colour feature vector to the colour label in the decision
space is a typical classification problem which can be solved by means of statistical
pattern recognition. The classification is performed by neural networks or polynomial
classifiers as described in Section 6.4. The coefficients of the network have to be
adapted during the learning phase with a representative set of labelled samples for every
colour class. Manually labelled traffic scene images are used to adapt a polynomial
classifier to the colours red, blue, yellow, black. grey and white. The traffic signs in
the application scenarios can be described by these colour terms.

Colour connected components  The colour labelled image is still an iconic represen-
tation of the traffic scene. Grouping all neighbouring pixels with a common colour
into regions creates a symbolic representation of the image. The computation of the
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so-called colour connected components (CCC) is performed by a fast, one-pass, line-
scan algorithm (Mandler and Oberlinder, 1990). The algorithm produces for each CCC
a list of all neighbouring components, thus providing full topological information. The
connected component analysis does not induce any information loss since the labelled
image can be completely reconstructed from the CCC database.

Now it is casy to retrieve candidate regions with a specific topological relationship
and colour combination efficiently.

Meta CCC language  Traffic sign candidates are extracted from the CCC database
with queries searching for instance for regions with a certain colour, inclusions of a
certain colour, and geomctrical attributes inside specific intervals. The ensemble of
CCC objects extracted by those queries is called a meta CCC object. The meta CCC
query language efficiently parses the database at run-time. The language comprises
pure topological functions (adjacency, inclusion, etc.) as well as functions exploiting
the shape of colour components (size, aspect ratio, coverage, eccentricity, etc.). e.g.
the filter

inside of(RED,WHITE) | aspect(0.8,1.2} | larger(12) | smaller(10000) |group +
inside of(RED,GREY) | aspect(0.8,1.2) | larger(12) | smaller(10000) | group

scarches for red objects which have white or grey inclusions, a square bounding box,
and a size reasonable for the traffic sign recognition procedure. Figure 6.4 shows that
the use of adequate querics helps to detect traffic signs even under non-ideal conditions.

The bounding boxes of the meta CCC objects into which the objects are grouped
with their inclusions form a region of interest (ROI). This ROI is the input to the
verification and classification stage of traffic sign recognition.

Recognition

The task of the recognition stage is to map the pixel values inside the ROI either to
a specific traffic sign class, or 1o reject the hypothesis. Employing statistical pattern
recognition (see Section 6.4) ensures that this mapping is insensitive Lo all the variations
of individual traffic signs, which are due to changes in illumination, weather conditions,
and picture acquisition for instance. Figure 6.5 shows a collection of red danger signs
varying in colour, spatial resolution, background, viewing aspect, and pictographic
symbols.

Feature extraction A main problem to be solved in building statistical pattern recog-
nition systems is the design of a significant feature vector.

R

insideof weakm&iﬁde satelfite

Fig. 6.4 Traffic sign detection in case of poor segmentation results.
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Fig. 6.5 Collection of red danger signs varying in colour, spatial resolution, background, viewing aspect, and
pictographic symbols.

There 1s a trade-ofl between the expenditure on feature extraction and on classifi-
cation. This means that clever normalization measures can simplify the classification
process considerably. Hence, il we manage to design a well balanced system, we can
do with a smaller learning set, will spend less computational effort, and increase the
classification efficiency and performance.

In samples ol traffic scenes we observe several kinds of variances:

I. in scale and reselution due to variable sizes of traffic signs and variable distances
between camera and object,

2. in translation due to inaccurate segmentation,

3. in photometric parameters (brightness, contrast, colour) due to variable weather and
lighting conditions,

4. in design of the traffic signs themselves due to different versions (fonts, layout).

A normalization of scale and photometric variances is feasible and part of our recogni-
tion system. The remaining variances can only be dealt with by learning from examples.

In fact we carry out three steps of normalization (see Figure 6.6); scale normalization,
colour mapping and intensity normalization. The starting point is a region of interest
delivered by our colour-based detection module.

Scale normalization is not dispensable, because the dimension of the input layer is
fixed for most classifier networks. Each pixel is interpreted as one component of the
feature vector.
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: ; .| Normalized . Mapped .| Normalized
Region of interest | scale "|  colours intensity

Fig. 6.6 Normalization steps.

In feature extraction for shape recognition a complementary colour mapping is
applied. Chromatic pixels are mapped to high and achromatic pixels to low inten-
sitics. This mapping emphasizes shape discriminating regions and suppresses noise.
Both background and pictograms are suppressed in the same manner, because these
regions have low colour saturation.

There are three dilferent mapping [unctions applicable according to the colour of
the traffic sign, which is already known after traffic sign detection. In order to reduce
the remaining variances of intensity (brightness, contrast), the mean and dispersion
of the pixels’ intensities are calculated and adjusted to standard values. If a pattern
is entirely achromatic (e.g. end of restrictions and most pictograms) complementary
colour mapping makes no sense. In this case we only normalize the intensity ol the
size-scaled ROT.

G+ B ; .
Y =R - —5— complementary colour mapping for red signs
R+ G : .
Y =8- 5 complementary colour mapping for blue signs
Rt . o
P % colour mapping for achromatic signs (6.8)

We conclude that the goal of normalization is to decrease the intra-class distance while
increasing the inter-class distance. Considering the feature space, we try to compress
the distributions of each class while separating distributions of different classes, thus
improving the ratio of spread and mean distance of the corresponding distributions,
This effect supports the performance of the subsequent classification, no matter how it
is implemented.

Model-based recognition A very important requirement for an autonomous TSR
system is the capability of considering variable road traffic regulations due to differ-
ences in jurisdiction between countries and temporal changes of rules.
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A hard coded structure of fixed classifiers with pre-programmed rules would mean a
drawback in flexibility. For this reason we used a model-based approach to organize a
number of shape and pictogram classifiers. In this approach we try to separate domain-
dependent from domain-independent data, thus providing an interchangeable model of
objects we intend to recognize and a more universal recognition machine.

[n order efficiently to construct a traffic sign model we investigate significant features
at first. Our system, motivated by human perception, is sketched in Figure 6.6. 1t starts
with the dominant colour, e.g. red, white or blue, which has already been used for
detection ol the regions of interest. Second, the shape of the traffic sign candidate 1s
checked before the pictogram is classified as described in Section 6.4.

For each image containing traffic sign candidates a so-called search tree is generated
according to the structural plan of the model.

The development of each search tree node involves computational effort. For effi-
ciency reasons the decision which node to develop next is taken in a best first manner.
Tf there is an upper bound estimate of the future costs the even more efficient A*
algorithm is applicable. Both metheds guarantee to find optimal paths. If a terminal
node is reached the search is finished.

Conclusions
The system described is capable of recognizing a subset of traffic signs in a robust
manner under real-world conditions. The results obtained above, however, refer to
single images only, i.e. relations between subscquent frames have been neglected.
Tracking traffic signs over the time interval during which they are in the field of view
adds to the stability of the recognition results. In test drives carried out by Daimler-
Chrysler on German and French motorways the recognition rate could be increased
from 72 per cent in single images to 98 per cent in image sequences. Tracking is also a
means of reducing computational effort in that the detection can be focused to smaller
scarch regions.

We can even cslimate the relative size and position of the sign if we evaluate all
monocular measurements of the tracked object with regard to the ego-motion of the
vehicle (depth from motion). This kind of information is used for further plausibility
checks and interpretation tasks,

Fig. 6.7 Recognition tree.
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Numerous context rules influence the validity of traffic signs, c.g. traffic signs may
apply to specific lanes, at specific times of day, or not beyond the next road junction.
Current vision modules cannot always gather this type of information with the required
reliability. For a commercially feasible system the vision-based recognition of traffic
signs and a digital map with traffic sign attributes must support each other. But an
autonomous vision system will be part of the solution since even the best map is no
exact mirror of the current traffic situation.

As pointed out in the introduction, a vision-based driver assistance system would
be even more attractive if it would be able to support the driver not only on the
highway, but also in city traffic. Intelligent stop-and-go is our first approach to
building such a system. It includes stereo vision for depth-based obstacle detection
and tracking and a framework for monocular detection and recognition of relevant
objects — without requiring a supercomputer in the trunk. Besides Intelligent Stop&
Go, many other driver-assistance systems such as rear-end collision avoidance or red-
traffic-light warning are also of interest for urban traffic. The most important perception
tasks that must be performed to build such systems are Lo:

detect the leading vehicle and estimate its distance, speed and acceleration;

detect stationary obstacles that limit the available free space, such as parked cars;
detect and classify ditferent additional traffic participants, such as pedestrians:
detect and recognize small traffic signs and traffic lights in a complex environment;
extract the lane course, even if it lacks well-painted markings and does not show
clothoidal geometry.

This list shows that the ability to recognize objects is essential for Intelligent Stop-&-
Go. Two classes of objects pertain (o this application, namely infrastructure elements
and traffic participants. How do we recognize those objects? Although devising a
general (ramework is difficult, we often find ourselves applying three steps: detection,
tracking and classification.

The purpose of the detection is efficiently to obtain a region of interest (ROI) — that
is, a region in the image or parameter space that could be associated with a potential
object. [t is obvious that not all objects can be detected by means of a unique algorithm.
We have developed methods that are based on depth from stereo, shape and colour.
Detected objects are tracked from frame to frame to estimate their motion and increase
the robustness of the system. Once an object of interest (depending on size or shape) has
been detected, the system tries to recognize it. In the considered scenario, objects have
4 wide variely of appearances because of shape variability, different viewing angles and
illumination changes. Since explicit models are seldom available, we derive models
implicitly by learning from examples. This turns object recognition to a classification
problem, which is described in detail in Section 6.4.

In this section, we present our detection schemes based on stereo and shape. Object
recognition tasks exploiting colour have already been described in Section 6.2.2 (traffic
sign recognition) and are sketched in Section 6.4 (traffic light recognition).
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Vision systems for driver assistance require an internal 3D map of the environment in
front of the car, in order Lo salely navigate the vehicle and avoid collisions. This map
must include position and motion estimates of relevant traffic participants and potential
obstacles. In contrast (o the highway scenario where you can concentrate on looking
for rear ends ol preceding vehicles, our system has to deal with a large number of
different objects, some of them non-rigid like pedestrians, some of them unknown.

Several schemes for obstacle detection in traffic scenes have been investigated in the
past. Besides the 2D model based techniques that search for rectangular, symmetric
shapes, inverse perspective mapping based techniques (Broggi, 1997), optical flow
based approaches (Enkelmann, 1997) and correlation-based stereo syslems using speci-
alized hardware (Saneyoshi, 1994) have been tested.

The most direct method to derive 3D-information is binocular stereo vision for which
correspondence analysis poses the key problem. Given a camera pair with epipolar
geometry, the distance £ to a point is inversely proportional to the disparity d in both
images according to:

Sxx B
=
where B denotes the base width and £, the scaled focal length.

We have developed two dilferent stereo approaches, one feature-based and one area-
based. Both have in common that they do not require specialized hardware but are able
to run in real-time on today’s standard PC processors.

L (6.9)

Real-time stereo analysis based on local features

A fast nonlinear classification scheme is used to gencrate local features that are used
to find corresponding points. This scheme classifics each pixel according to the grey
values of its four direct neighbours (Franke and Kutzbach, 1996). It is verified whether
each neighbour is significantly brighter, significantly darker or has similar bright-
ness compared to the considered central pixel. This leads to 3* = 81 different classes
encoding edges and comers at different orientations. The similarity is controlled by
thresholding the absolute difference of pixel pairs.

Figure 6.8 shows the left image of a stereo image pair taken from our camera system
with a base width of 30cm. The resull of the structure classification is shown in the
right part. Different grey values represent different structures.

The correspondence analysis works on these feature images. The search for possibly
corresponding pixels is reduced to a simple test whether two pixels belong to the same
class. Since our cameras are mounted horizontally, only classes containing vertical
details are considered. Thanks to the epipolar constraint and the fact that the cameras
are mounted with parallel optical axis, pixels with identical classes must be searched
on corresponding image rows only.

It is obvious that this classification scheme cannot guaranice uniqueness of the corre-
spondences, In case ol ambiguities, the solution giving the smallest disparity, 1.e. the
largest distance, is chosen to overcome this problem. This prevents wrong correspon-
dences caused by for example periodic structures to generate phantom obstacles close
to the camera. In addition, measurements that violate the ordering constraint are ignored
(Faugeras, 1993).
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Fig. 6.8 Left image of a sterea image pair and the features derived by the sketched nonlinear operation. Each
colour denotes one of the 81 structural classes, pixels in homogeneous areas are assigned to the "white’ class.
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Fig. 6.9 Results of the correspondence analysis. Image (a) shows the result of the feature based approach,
image (b) shows the result of the carrelation-hased scheme, Distance is inversely proportional to the darkness.

The outcome of the correspondence analysis is a disparity image, which is the basis
for all subsequent steps. Figure 6.9 visualizes such an image in the left half. Of course,
the result looks noisy due to the extreme local operation.

On a 400 MHz Pentium 11 processor this analysis is performed within 23 milliseconds
on images of size 384 x 256 pixel.

The advantage of this approach is its speed. Two lacts might be a problem in some
applications. First, the disparity image is computed with pixel accuracy only. This
problem can simply be overcome by post-processing. Second, the described algorithm
uses a threshold to measure similarity. Although the value of this threshold turns out
to be uncritical, it is responsible for mismatches of structures of low contrast.

Real-time stereo analysis based on correlation

For applications that do not need a cycle rate of 40 milliseconds but require high preei-
sion 3D information, we developed an alternative area-based approach. The maximum
processing time that we can tolerate is 100 ms.

In order to reach the goal, we must use the sum-of-squared or sum-of-absolute
differences crilerion instead of expensive cross-correlation to find the optimal fit.
Since gain and shutter of our cameras are controlled by the stereo process, this is
acceptable.
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However, real time is still a hard problem. Full brute-force correlation of 9 x 9
pixel windows requires about 9 seconds for images of size 384 x 256, if the maximum
disparity is set to 80 pixels. With an optimized recursive implementation we achieved
typical values of 1.2 seconds.

To speed up the computation, we use a multi-resolution approach in combina-
tion with an interest operator (Franke and Joos, 2000). First, a gaussian pyramid 1s
constructed for the left and right stereo images, based on a sampling factor of 2. Areas
with sufficient contrast arc extracted by means of a fast horizontal edge extraction
scheme. Non-maximum suppression yields an interest image, from which a binary
pyramid is constructed. A pixel (7, j) at level n is marked il one of its four corre-
sponding pixcls at level » — | is set. On an average, we find about 1100 attractive .
points at pyramid level zero (original image level), 700 at level one, 400 at level
two and about 150 at level three. Only those correlation windows with the central
pixel marked in these interest images are considered during the disparity estimation
procedure.

Depending on the application, the correlation process starts at level two or three
of the pyramid. If D is the maximum searched disparity at level zero, it reduces to
D/2*r at level n. At level two this corresponds to a saving of computational burden
of about 90 per cent compared to a direct computation at level zero. Furthermore,
smaller correlation windows can be uscd at higher levels which again accelerates the
computation.

The result of this correlation is then transferred to the next lower level. Here.
only a fine adjustment has to be performed within a small horizontal scarch area of
+1 pixel. This process is repeated until the final level is reached. At this level, subpixel
accuracy is achieved by fitting a parabolic curve through the computed correlation
coefficients.

The price we have to pay for this fast algorithm is that mismatches in the first
compuled level propagate down the pyramid and lead to serious errors. In order to
avoid this problem, we compute the normalized cross-correlation coefficient for the
best matches at the first correlation level and eliminate bad matches from further
nvestigations.

If we start at level 2 (resolution 91 x 64 pixels), the total analysis including pyramid
construction runs at about 90 milliseconds on a 400 MHz Pentium. If we abandon the
multi-resolution approach, about 450 milliseconds are necessary to yield comparable
results.

A disparity image derived by this scheme is shown in Figure 6.9 in comparison to
the featurc-based approach. Since a large neighbourhood is taken into account during
processing, the result looks less noisy. In fact, only a few mismatches remain, typically
in case of periodic structures. A common left-right test applied to the results of the
highest evaluation level further reduces the error rate.

Obstacle detection and tracking
The result of both algorithms is a disparity or depth image. Therefore, the further
processing is independent of the method used.

Driving on roads, we regard all objects above ground level as potential obstacles. If
the cameras are mounted H metres above ground and looking downwards with a Lilt
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(a) {b)

Fig. 6.10 From the depth map {a) the free space in front of the car is derived {b).

angle ¢, all image points with a disparity given by

B ;
i e R o — Efl. X L:;— x cos(w) + sin(e) (6.10)

lie on the road.

The projection of all features above the road plane, i.c. those with disparities larger
than given by equation 6.10, yields a two-dimensional depth map. In this histogram,
ohstacles show up as peaks.

The map shown in Figure 6.10 covers an area of 40m in length and 6 m in width.
The hits in the histogram are clearly caused by both cars parking left and right, the car
in front, the pedestrian and the white car on the right side. Although the featurc-based
approach looks noisy. the depth maps of both approaches arc comparable. This map
is used (o detect objects that are tracked subsequently. In cach loop, already tracked
objects are deleted in this depth map prior to the detection.

The detection step delivers a rough estimate of the object width. A rectangular box is
fitted to the cluster of feature points that contributed to the extracted area in the depth
map. This cluster is tracked from frame to frame. For the estimation of the obstacle
distance, the disparities of the object’s feature points are averaged.

In the current version, an arbitrary number of objects can be considered. Sometimes
the right and left part of a vehicle are initially tracked as two distinct objects. These
objects are merged on a higher ‘object-level’ if their relative position and motion fulfil
reasonable conditions.

From the position of the objects relative to the camera system their motion states,
i.c. speed and acceleration in longitudinal as well as lateral direction, are estimated by
means of Kalman filters. For the longitudinal state estimation we assume that the jerk,
i.e. the deviation of the acceleration, of the tracked objects is small. This is expressed
in the following stale model with distance d. speed # and acceleration a:

d 1 T 7122 d Uy
W =10 1 T x | —=Tx |0
£V 0 0 1 dp Jy, 0
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The index { denotes the stales of the lead vehicle, the index ¢ denotes the ego vehicle.
T is the cycle time. The longitudinal motion parameters are the inputs for a distance
controller. An example of autonomous vehicle following is given in Section 6.5.

Further analysis of the depth information

The depth image contains more useful information. The fact that we can identify struc-
tures on the road plane improves the performance of lane and crosswalk recognition
as described in Sections 6.2.1 and 6.3.3.

Camera height and pitch angle are not constant during driving. Fortunately, the rele-
vant camera parameters can be efficiently estimated themselves using the extracted road
surface points. Least squares techniques or Kalman filtering can be used to minimize the
sum of squared residuals between expected and found disparities (Franke ef al., 1998).

Active collision avoidance is the ultimate goal of driver assistance. A careful eval-
uation of the depth map allows extraction of free space on the road that could be used
for a jink. Figure 6.10 shows the depth map derived for the situation considered here
and the determined free space. Alternatively, the driving corridor can be estimated
rom the depth map, if no other lane boundarics are present.

6.3.2 Shape-based analysis B

Another important vision cue for object detection is shape. Compared with colour,
shape information lends to remain more stable with respect to illumination conditions,
because of the differential nature of the edge extraction process. We developed a
shape-based object detection system general enough to deal with arbitrary shapes,
whether paramelerized (e.g. circles, triangles) or not (e.g. pedestrian outlines). The
system does not require any explicit shape-models, and instead learns from examples.
A template matching technique provides robustness to missing or erroncous data; it
does so without the typical high cost of template matching by means of a hierarchical
technique. The resulting system is called the *Chamfer System’ (Gavrila and Philomin,
1999): it provides (near) real-time object detection on a standard PC platform for many
usclul applications.

The Chamfer System

Al the core of the proposed system lies shape matching using distance transforms
(DT). e.e. Huttenlocher ef al. (1993). Consider the problem of detecting pedestrians
in an image (Figure 6.11(a)). Various object appcarances are caplured with templates

7L

{a) {b)

Fig. 6.11 (a) Original image {b) Template {c) Edge image (d) DT image.
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such as in Figure 6.11(b). Matching template T and image I involves computing the
featurc image of I, (Figure 6.11(c)) and applying the distance transform to obtain a DT-
image (Figure 6.11(d)). The template T is transtormed (e.g. translated) and positioned
over the resulting DT image of I: the matching measure D(T, T) is determined by
the pixel values of the DT image which lic under the data pixels of the transformed
template. These pixel values form a distribution of distances of the template features
(o the nearcst features in the image. The lower these distances are, the better the match
between image and template at this location. There are a number ol matching measures
that can be defined on the distance distribution. One possibility is to use the average
distance o the nearest feature. This is the chamfer distance, hence the name of the
system. Other more robust (and costly) measures further reduce the effect of missing
features (i.e. duc to occlusion or segmentation errors) by using the average truncated
distance or the f-th quantile valuc (the Hausdorff distance), c.g. Huttenlocher et al.
(1993). In applications, a template is considered matched at locations where the distance
measure D(T.1) is below a user-supplied threshold.

The advantage of matching a template with the DT image rather than with the
cdge image is that the resulting similarity measure will be smoother as a function
of the template transformation parameters. This cnables the use of an efficient scarch
algorithm to lock onto the correct solution, as will be described shortly. It also allows
some degree of dissimilarity between a template and an object of interest in the image.

The main contribution of the Chamfer System is the use of a template hierarchy
efficiently to match whole scts of templates. These templates can be geometrical trans-
formations of a reference template, or, more generally, be examples capturing the set of
appearances ol an object of interest (e.g. pedestrian). The underlying idea is to derive
a representation off-line which exploits any structurc in this template distribution, so
that, on-line. matching can proceed optimized. More specifically, the aim is to group
similar templates together and represent them as two entities: a ‘prototype’ template
and a distance parameter. The latter needs to capture the dissimilarity between the
prototype template and the templates it represents. By matching the prototype with the
images, rather than the individual templates, a Lypically significant speed-up can be
achieved on-line. When applied recursively, this grouping leads to template hierarchy,
see Figure 6.12.

The above ideas are pul into practice as follows. Off-line, a template hierarchy is
gcenerated automatically from available example templates. The proposed algorithm
uses a bottom-up approach and applies a K-means-like algorithm at each level of the
hierarchy. The input to the algorithm is a set of templates t, . ... tN their dissimilarity
matrix and the desired partition size K. The output is the K-partition and the prototype
templates py. ..., pk for each of the K groups Si,....S«. The K-way clustering is
achieved by iterative optimization. Starting with an initial (random) partition, templates
are moved back and forth between groups while the following objective function E is
minimized:

K
= Z ?lﬂﬂx D(t;. px) (6.11)

k=1
Here, D(t;, pi) denotes the distance measure between the ith element of group £, t;,

and the prototype for that group at the current iteration, pi. The distunce measure is the
same as the one used for matching (e.g. chamfer or Hausdorft distance). One way of
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Fig. 6.12 A hierarchy for pedestrian shapes (partial view).

choosing the prototype pi; is to select the template with the smallest maximum distance
to the other templates. D(/, j) then represents the i- jth entry of the dissimilarity matrix,
which can be computed fully before grouping or only on demand.

Note that a low F-value is desirable since it implies a tight grouping; this lowers the
distance threshold that will be required during matching which in turn likely decreases
the number of locations which one needs to consider during matching. Simulated
anneating (Kirckpatrick et al., 1993) is used to perform the minimization of the objec-
tive function E.

Online, matching can be seen as traversing Lhe tree structure of templates. Each
node corresponds (o matching a (prototype) template with the image at some particular
locations. For the locations where the distance measure between template and image is
below a user-supplied threshold, one computes new interest locations for the children
nodes (generated by sampling the local neighbourhood with a finer grid) and adds the
children nodes to the list of nodes Lo be processed. For locations where the distance
measure is above the threshold, the scarch does not propagate to the sub-tree; it is this
pruning capability that brings large efficiency gains. Initially, the matching process
starls at the root and the interest locations lie on a uniform grid over relevant regions
in the image. The tree can be traversed in breadth-first or depth-first fashion. In the
experiments, we use depth-first traversal, which has the advantage that one needs to
maintain only L — 1 sets of interest locations, with L the number of levels of the tree.
It is possible to derive an upper-bound on the distance threshold at each node of the
hierarchy, such that one has the desirable property that using untruncated distance
measures such as the chamfer distance, one can assure that the combined coarse-to-
finc approach using the template hierarchy and image grid will not miss a solution
(Gavrila and Philormin, 1999). In practice however, one can get away with using more
restrictive thresholds to speed up detection.

A number of implementation choices further improved the performance and robustness
of the Chamfer System, e.g. the use of oriented cdge features, template subsampling,
multi-stage edge segmentation thresholds and the incorporation of regions of interest
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(e.g. ground-plane). Applying SIMD processing (MMX) to the main bottlenecks of the
system, distance transform computation and correlation, resulted in a speed-up of a factor
of 3-4.

Application: traffic sign detection

We tested the Chamfer System on the problem of traffic sign detection as an alternative
to the colour system described above (Gavrila, 1999b). Specifically, we aimed to detect
circular, triangular (up/down) and diamond-shaped tratfic signs, as seen in urban traffic
and on secondary roads. We used templates for circles and triangles with radii in the
range of 7—18 pixels (the images are ol size 360 by 288 pixels). This led to a total of
48 templates, placed at the leaf level of a three-level hierarchy. In order to optimize for
speed, we chose Lo scale the templates (off-line), rather than scale the image (on-line).

We did extensive tests on the traffic sign detection application. Off-line, we used a
database of several hundred traffic sign images, taken during both day- (sunny, rainy)
and night-time conditions. Under good visibility conditions, we obtained high single-
image detection rates, typically of over 95 per cent, when allowing solutions to deviate
by 2 pixels and by radius 1 from the values obtained by a human. At this rate, there
were a handful of detections per image which were not traffic signs, on average. These
false positives were overwhelmingly rejected in a subsequent verification phase, where
a RBF network (see Section 6.4) was used as pictograph classifier (the latter could
distinguish about 10 pictographs); see Figure 6.13.

The traffic signs that were not detected, were either tilted or otherwise, reflected
difficult visibility conditions (e.g. rain drops, partial occlusion by window wiper, direct
sunlight into camera). Under the latter conditions, detection rates could decrease by
as much as 30 to 65 per cent. We spent many hours testing our system on the road.
The traffic sign detection (and recognition) system currently runs at 10-15Hz on a
600 MHz Pentium processor with MMX. Tt is integrated in our Urban Traffic Assistant
(UTA TI) demonstration vehicle.

Application: pedestrian detection

The second application of the Chamfer System was the detection of pedestrians. Not
swrprisingly, it is more challenging than traffic sign detection since it involves a much
larger variety of shapes that need to be accounted for, Furthermore, pedestrian contours
are less pronounced in the images and more difficult to segment. Note that with a few
exceptions much of the previous work on ‘looking at people’ has involved a static
camera, sce Gavrila (1999a) for an overview; initial scgmentation was possible by
background subtraction, That ‘luxury’ is not given to us here, because of a moving
vehicle.

Fig. 6.13 Shape-based traffic sign detection (and recognition) with the Chamfer System.

155



Intelligent Vehicle Technologies

We compiled a database of about 1250 distinct pedestrian shapes at a given scale;
this number doubled when mirroring the templates across the y-axis. On this set of
templales, an initial four-level pedestrian hierarchy was built, following the method
described in Section 6.3.2. In order to obtain a more compact representation of the
shape distribution and provide some means [or generalization, the leaf level was
discarded, resulting in the three-level hicrarchy used for matching (e.g. Figure 6.12)
with about 900 templates at the new leaf level. per scale. Five scales were used,
covering a size variation of 50 per cent. Our preliminary experiments on a database
of a few hundred pedestrian images (distinct from the sequences used lor training)
resulted in a detection rate of about 75—85 per cent per image, with a handtul false-
positives per image. These numbers are [or un-occluded pedestrians. See Figure 6.14
for a few detection results.

Figure 6.15 shows some potential false positives: typically they are found on trees or
windows. Using the flat-world assumption and knowledge about camera geometry, we

Fig. 6.15 Potential false positives.
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have set region of interests for the template in the hierarchy, so that many erroncous
template locations can a priori be excluded, speeding up matching greatly. The current
pedestrian system runs at 2—-5 Hz on a 600 MHz Pentium processor with MMX. It is
part of our pedestrian detection and recognition system that is described in Section 6.5.

6.3.3 Road recognition
The standard applications of road recognition are lane keeping and lane departure
warning. In the context of a stop-and-go system, road recognition has additional rele-
vance:

e If following a vehicle, lateral guidance can be accomplished by driving along the
trajectory of the leading vehicle. If its distance and the angle between the leading
vehicle and the heading direction is measured, a lateral tow bar controller can be
used approximately to follow the trajectory. This controller tends to cut corners. Its
performance can be improved if the position of the ego-vehicle relative to the lane
is known (Gehrig and Stein, 1999).

e When the leading vehicle changes lane, a simple-minded following leads to hazar-
dous manocuvres. As long as the camera exclusively observes the field in front of
the vehicle, collision avoidance is no longer guaranteed if the autonomous vehicle
departs the lane. Thus, an intelligent stop-and-go system should be able to register
lane changes of the leading vehicle and return the control to the driver.

e If the leading vehicle gets lost, but the vehicle’s position in the lane is known, a
lateral controller should guide the vehicle at least for a while, so that the driver has
enough time to regain control.

e The response of the autonomous car to a detected object depends on the object’s
position in the road topology. A pedestrian on a crosswalk is clearly more critical
than a pedestrian on a sidewalk.

In Section 6.2 a lane recognition system for highways is presented. The vision compo-
nent of that system has a top-down architecture. A highly constrained model is matched
against lane markings in image sequences. As pointed out, such model-based tracking
is not only efficient since the considered image regions are small but also very reliable
since the vehicle kinematics and the road geometry and its continuity are integrated in
the model.

In the urban environment a global model for the broad range of possible road topogra-
phies is not available. The roads are characterized by:

e lane boundaries of which the shape and appearance are often discontinuously changing
e an arbitrary road shape
e a lack of a unique lecature such as markings.

In this scenario, a pure tracking approach that simply extrapolates previously acquired
information is not sufficient. The detection capability of data driven algorithms is
required. Unfortunately, such bottom-up control strategies arc computationally expen-
sive since they have to process large image portions. Our urban lane recognition system
combines a data driven approach with the efficiency of model-based tracking (Paetzold
and Franke, 1998).
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The data-driven global detection generates road structure hypotheses at a cycle rate
just high enough to keep up with the dynamic environment. The model-based tracking
estimates a dense description of the road structure in video real time, a requirement
for comfortable lateral guidance. As common in multiple target tracking, the tracking
results are referred to as tracks (Bar-Shalom and Fortmann, 1988). The detected hypoth-
esis and the already existing tracks comprise a pool of tracks.

Both parts are fused such that the required computational power is minimized, The
goul of global detection is the separation of road structures such as markings, curbs
and crosswalks from heavy background clutter. Unlike highway lane boundaries, their
local intensity distribution is not very distinctive. Rather, global geometric proper-
ties as length, orientation and shape are utilized. The detection schemes rely on the
assumptions that:

e lane boundaries are long

¢ lanc boundaries and crosswalks are parallel, stop lines are orthogonal to the vehicle’s
irajectory

e road structures have lincar shape or can partially be approximated by lines

e road structures are bands of constant brightness

e road structures lie in the 3D-road surface (which is the ground-plane by default).

These global characteristics can be derived from a polygonal edge image which is
well suited to describe the lincar shapes of road structures, see bottom left image of
Figure 6.16. For related work, see Enkelmann et al. (1995).

The detection of road structures is facilitated through an inverse-perspective mapping
of the edge image into bird’s eye view. By removing the perspective distortion, the
geometrical properties of the road structures in 3D-world are restored, illustrated 1n top
right image of Figure 6.16. In that representation, the data is scanned for subsets of

Fig. 6.16 Detection of road structures. Clockwise from left top: detected crosswalk in an urban scenario,
bird's eye view on road, typical pattern of vertically projected edges in presence of a crosswalk, edge image.
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features that are consistent with a simple feature model of the road structure, embodying
the above listed characteristics.

To speed up this procedure, the polygon data is perceptually organized. The inter-
esting intrinsic elements are length, orientation and position; the interesting clustering
elements are parallelism and collinearity. The polygon data can be filtered for instances
of these regularities in an arbitrary, iterative order to minimize the computational load.
This is particularly crucial when we are interested in more than one object type that
all have the same basic regularitics in common.

Stereopsis helps to discard non-road measurements. Image regions where obsta-
cles are present, detected as described in Section 6.3.1, are ruled out. Furthermore,
measurements that do not lic in the 3D-road surface are suppressed. Stereopsis also
enables the separation of vertical from horizontal shape and motion (pitching). Contrary
to monocular vision where the pitch angle and the camera height are determined by
assuming lanes ol constant width, a model of the vertical geometry is recursively
fitted through the stereo observations. Within the presented lane recognition system,
the vertical model is linear and estimated by a first order Kalman filter.

The model underlying the tracking process must account for the arbitrary shape of
urban lanc boundaries. No appropriate geometric parameter model of low order exists
that approximates the global road shape which can have sharp corners, discontinu-
ities and curvature peaks. Therefore, local geometric properties such as lane tangent
orientation and curvature are estimated by means of Kalman filtering.

This model definition is equivalent to a local circular fit to the lane boundary. Since
a circle approximates arbitrary curves only [or short ranges with negligible error, these
propertics are estimated not at the vehicle’'s position as done on highways but at a
distance zq ahead. The system dynamics is given by

-i-[] = —"{-‘.&'l!f — T(!f*:cn\;nr 20-
1

A = —veg + Wensors € < ——
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The measurement equation is approximately given by
Xmcasured {Z) =0 + (Z’. " ZU)‘”—\‘,[’ + ],"’2(:(] (:-7 - ZU)Z (6 ] 3)

where 7 is the considered distance. Both equations turn inte the standard highway
equations for zp = 0 and ¢) = 0.

For each track in the pool the state vector is updated recursively. At each tracking
cycle the track pool is subject to initiation, assessment, merging, verification, classi-
fication and deletion. The track assessment is the central operation. Its objective 1
to indicate whether a track is assigned to a lane boundary or to background clutter.
An appropriate track quality is determined by lowpass-filtering the ratio of successful
measurements and attempted measurements. This measure is used to trigger initiation
and deletion.

Verification and classification are rule-based components. All tracks that are mark-
ings, parallel to already verified tracks or parallel to the vehicle’s trajectory for a certain
travelled distance, are labelled as verified. Verified tracks are classified into left/right
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Fig. 6.17 (a) The vehicle ahead is driving in the adjacent lane. In turns, estimated lanes give valuable
information about the topological traffic situation. (b) The lane is defined by tracked broken lane markings and
a kerh. The leading vehicle drives in that lane.

lane boundary. other lane boundaries and clutter by evaluating the relative position of
the tracks to the vehicle.

In Figure 6.17(a), the broken lane markings are tracked. The possible driving
corridor takes a right turn, bypassing the light truck that is driving in another lane. In
Figure 6.17(b), a kerb and broken lane markings are tracked. which define the lane of
the autonomous car as well as the leading vehicle. The lane is defined by broken lane
markings on the left side and a kerb on the right side. The vehicle ahead is centred in
the lane.

The detection ol crosswalks also draws from the principles of a data-driven strategy.
It consists of an early detector relying on spectrum analysis of the intensity image in
horizontal dircction and an edge-based verification stage.

The early detector observes the intensity lunction in multiple image lines evenly
distributed over the interesting range of sight. Inspecting these intensity functions
shows that a zebra crossing gives rise to a periodic black and white pattern of a known
frequency. The power spectrum of that signal is calculated. When the spectral power at
the expected frequency exceeds a threshold, the scene is subject to lurther investigation.
By projecting the edges parallel and orthogonal to their predominant direction, marginal
distributions are produced. Those marginal distributions exhibit distinctive patterns in
presence of crosswalks, see Figure 6.16 where the parallel projection is displayed.
These patterns are analysed by a rule-based system.

Arrow recognition

Besides lane course, stop lines and crosswalks, arrows painted on the road are of
interest. Our recognition ol those arrows follows the two-step procedure, detection
and classification, mentioned earlier. In contrast to the lane recognition, shape and
brightness cues are used in a region-based approach. The detection steps consist of
grey-value segmentation and filtering.

An adaptive grey-scale segmentation reduces the number of colours in the original
image to a handful. In this application, we base this reduction on the minima and
platcaux of the grey-scale histogram. Following this grey-scale segmentation the colour
connected components analysis desceribed in Section 6.2.2 is applied to the segmented
image. The algorithm produces a database containing information about all regions
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(b)
Fig. 6.18 (a) Street scene displaying a direction arrow. (b) The segmented and classified arrow.

in the segmented image. Arrow candidate regions are sclected from the databasc by
appropriate gueries and merged to objects of interest.

The resulting set is normalized for size and given as input to a radial-basis-function
classifier (sce Section 6.4). It has been trained to about a thousand dilferent arrow
images taken under different viewing angles and lighting conditions. Figure 6.18 shows
the original and the obtained result.

Principles, pros and cons

In Section 6.3 we described methods for object detection. They yield information about
the position and motion behaviour of an object, but we still have to find out about what
type of object is concerned. The latter task is what we call object recognition.

After detecting an object that fulfils certain simple criteria concerning c.g. size and
width-to-height ratio and eventually motion, the image region of interest (RO1) dehiv-
ered by (he detection stage is first cropped and scaled to a uniform size; eventually, a
contrast normalization is performed afterwards. Our general approach is then training
instead of programming; we thus regard the object recognition problem as a classi-
fication problem 1o be solved by classification techniques that all require a training
procedure based on a large number of examples. The advantage of this approach is
that no explicit models of the objects to be recognized have to be constructed, which
would be a rather difficult, il not impossible task especially for largely variable objects,
c.g. pedestrians. Robust recognition systems are obtained by performing bootstrap-
ping procedures, i.e. beginning with a certain set of training samples, then testing the
resulting system in the real-world environment and re-training the recognition errors
in order to generate a new version of the system that then has to undergo the same
procedure, and so on. The disadvantage of the model-free approach is of course that
huge amounts of training and test data have to be acquired and labelled in order to be
able to achieve a high generalization performance.
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Our object recognition algorithms are based on the classification ol single images
when regarding rigid objects like traffic signs, traffic lights or rear views of cars: this
approach is as well used for a fast preselection of ROIs delivered by the detection
stage possibly containing pedestrians, to be processed by more complicated methods
afterwards. To achieve a more rcliable recognition of pedestrians, image sequences
displaying the characteristic motion of the legs, i.e. the pedestrian’s gait pattern, are
classified as a whole by employing the novel adaptable time delay neural network
(ATDNN) concept based on spatio-lemporal receptive fields. This neural network 1s
used both as a ‘standalone’ classification module and for computationally efficient
dimension reduction of high-dimensional input feature vectors. The latter technique
makes it possible to employ standard classification techniques like polynomial classi-
fiers (Schiirmann, 1996) and support vector machines (Schoclkopf, 1999) as well as a
radial basis function network algorithm specially designed for the recognition of traffic
signs (KreBel er al.. 1999).

Description of the classification techniques
The polynomial classifier as described in Schiirmann (1996) conslructs a so-called
polyiomial structure list of multiplicative features from the original input features in
the first layer as shown in Figure 6.19. These are referred to as enhanced features. The
second layer is a linear combination of the enhanced features defined by the coefficient
matrix W. While the polynomial structure list must be chosen by the designer of
the classifier (¢c.g. complete quadratic as in Figure 6.19), the adaptation of the weight
matrix W is performed using the training set. An important advantage of the polynomial
classifier is that there exists an analytical solution for adapting the weight matrix W, if
the empirical risk, i.e. the average over the training set of the sum of square differences
between the actual classifier outputs and the corresponding desired values is minimized.
The support vector machine (SVM) (see c.g. Scholkopf, 1999) in its elementary
form is a classification concept for two-class problems that constructs a hyperplane
in feature space that separates the samples of the two different classes In &4 manner
that is optimal in the sense that the euclidean distance between the samples and the
separating plane is as large as possible. The underlying concept is that of structural
risk minimization. In the context of perceptron learning, the perceptron whose weight
vector defines this optimal hyperplane is called the perceptron of maximum stability;
it is obtained by a special training procedure called the AdaTron algorithm (Anlauf
and Biehl, 1990). The hyperplane is defined in terms of the training samples situated
nearest to it only; these training samples are therefore called support vectors. As most

Fig. 6.19 Complete quadratic polynomial classifier for two features and three classes.
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Fig. 6.20 Optimal separating hyperplane for a two-class problem.

realistic problems are not linearly separable in input space, L.e. it is impossible to
find a hyperplane that perfectly separates the two classes in input space, a feature
space of a usually much higher dimension is generated from the input space by a
nonlinear transformation. The separating planc is constructed in this feature space:
special procedures exist for handling distributions of training patterns that are stll not
linearly separable after transformation into feature space. Throughout this section, we
will make use of the so-called polynomial SVM of a given order d, the feature space of
which is spanned by polynomial combinations of the input features of up to dth order.
Compared to other classification algorithms, the SVM concept yields a rather high
generalization performance especially in the case of problems involving a relatively
low number of training samples.

For the application of traffic sign recognition we developed a special radial basis
function (RBF) classifier introduced in Krebel e al. (1999). Tt consists of N reference
vectors in [eature space Lo each of which an object class ¢; and two parameters a; and
b; with a; = b; are assigned. The number of object classes is denoted by K. For an
unknown sample fed into the classifier, all ¥ euclidean distances d; in feature space
hetween the sample and the reference vectors are calculated. The decision to which
class the sample belongs is based on the value R(d:) which we define as:

1 il d; =
Rdy=1{ J=9 if a=<di<bh (514
0 it diz b

The ramp function R(d;) is a radial basis function as it only depends on the euclidean
distance o;. In classical RBF classiliers (e.g. Poggio and Girosi, 1990) gaussians are
used as radial basis lunction but the described ramp functions arc more suitable for
real-time applications due to their high computational efficiency. To be able to decide
to which class the input sample has to be assigned we set:

N

K
Po= Y, R@). Sp=) P (6.15)
k=1

i=l.n=Fk
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As a measure for the probability that the sample belongs to class k we then define:

Pu/Sp il Sp=1

. (6.16)
P if Sﬁ =<1

I.I\.:

and as a measure for the probability that the sample belongs to none of the object
classes (refect probability).

b 1—-Sp ifSp=1 6.17)
T 10 if Sp > 1 ‘

The input sample is assigned to the class with the highest Py value: if Preje 18 larger
than all P, values, the sample is assigned to an additional reject class. The sample 1s as
well rejected if the highest P, value is lower than a given threshold ¢ with 0 < < L
Varying ¢ and measuring the rate of rejected test samples yields the receiver operating
characteristics (ROC) curve ol the classifier,

The reference vectors of the RBF classifier arc the centres of clusters which are
derived from the training examples divided into the K training classes. They are deter-
mined by an agglomerative clustering algorithm. The ramp parameters 4; and b; of the
ith radial basis function are defined in terms of the distance to the nearest cluster centre
of the same class. the distance to the nearest cluster centre of one of the other classes,
the average mutual distance of all clusters within each class k and the corresponding
average over all K classes. Details are given in KreBel er al. (1999).

For classification of image sequences we developed the adaptable time delay neural
network (ATDNN) algorithm presented n detail in (Wéhler and Anlauf, 19994, b). It
is based on a time delay neural network with spatio-temporal receptive fields and adapt-
able time delay parameters. The general time delay neural network (TDNN) concept is
well known from applications in the field of speech recognition (Waibel ef al., 1989).
An important training algorithm for the TDNN, named temporal backpropagation, is
presented in (Wan, 1990). A training algorithm for adaptable time delay parameters is
developed in (Day and Davenport, 1998) for continuous time signals (Contintous-time
temporal backpropagation). The related Tempo 2 algorithm is described in (Boden-
hausen and Waibel, 1991) for input data defined at discrete time steps, as 1s the case
for image sequences; the input window, however, is restricted to gaussian shape.

The architecture of the ATDNN is shown in Figure 6.21. The three-dimensional
input layer receives a sequence of images acquired at a constant rate, as is the case
especially for video image sequences. The activation of the input neuron at spatio-
temporal position (x, ¥, f) corresponds to the pixel intensily at position (x, y) on the
rth image of the input sequence. In the ATDNN architecture, a neuron of a higher
layer does not receive input signals from all neurons of the underlying layer, as is the
case, ¢.g. for multi-layer perceptrons (MLPs), but only from a limited region of it,
called the spatio-temporal receptive field of the corresponding neuron. Such a spatio-
temporal receptive field covers a region of Ry X R, X Ti}r“ pixels in the input sequence
with Tt}f — 1+ (R, — 1)g and R, as the number of weight sets that belong to the
same time slot, respectively. We call g the fime delay parameier. The distance of
the centres of two neighbouring spatio-temporal receptive ficlds is given by Dy, D,,
and D,. where we constantly take D; = L. For each neuron of layer 2 and higher,
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Fig. 6.21 Architecture of the adaptable time delay neural network.

we set g(x) = tanh(x) as a sigmoid activation function. The ATDNN is composed ol
NRF different branches, each of which consists of a three-dimensional layer of neurons
(layer 2 in Figure 6.21). As we follow the shared weights principle inside each branch,
the same set of weight factlors is assigned to each layer 2 neuron of a certain branch.
Effectively, this conficuration ol spatio-temporal receptive fields produces activation
patterns in neuron layer 2 representing one spatio-temporally filtered version of the
original input image sequence per network branch. Neuron layer 2 and 3 are fully
connected in the spatial directions; in the temporal direction, however, we implemented
a structure of temporal receptive lields and shared weights with time delay parameter
p. The extension of the temporal receptive fields between neuron layer 2 and 3 amounts
to Tfr) =14 (R, — )p, R, standing for the number of weight sets belonging to the
same time slot, respectively. To each branch s and each output class £ one shared
set of temporal receptive ficld weights is assigned. The resulting activations of neuron
layer 3 are then averaged classwise to obtain the output activations ay for the K output
classes to which the ATDNN is trained.

The ATDNN as shown in Figure 6.21 is only defined for integer-valued time delay
parameters 8 and p. The oulput of the ATDNN for real-valued time delay parameters 1s
obtained by bilinear interpolation between the output values resulting from the neigh-
bouring integer-valued time delay parameters. We usc a backpropagation-like on-line
gradient descent rule to train the ATDNN weights and time delay parameters, referring to
a standard quadratic error measure. Details can be found in Wéhler and Anlauf (1999a, b).

Techniques for dimensionality reduction
The comparably high dimensionality of images or image sequences to be classi-
fied poses difficulties for many standard pattern recognition techniques. a problem
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sometimes known as the ‘curse of dimensionality’. It is thercfore often necessary to
reduce the dimensionality of the patterns, preferably by techniques that conserve class-
specific properties of the patterns while discarding only the information that is not
relevant for the classification problem.

A well-known standard method lor dimensionality reduction is the principal compo-
nent analysis (PCA) algorithm (for a thorough introduction, see e.g. (Diamantaras and
Kung (1996), Schiirmann (1996)). In a first step, the covariance matrix C of the distri-
bution of training patterns is computed. The size of C is N x N, where N denotes the
dimension of the feature space in which the original patterns are defined. Then the N
eigenvalues and corresponding eigenvectors of C are calculated and ordered according
to the size of the eigenvalues; as C is necessarily positive semidefinite, all eigenvalues
of € are non-negative. For further processing, the training patterns are then expanded
with respect to the M most significant cigenvectors (“principal components’) of C, i.e.
the eigenvectors belonging to the M largest eigenvalues of C, neglecting the remaining
N — M cigenvectors. The obtained M expansion coefficients (M < N) are used as new
features for classification. The basic property of the PCA algorithm is that it minimizes
the Buclidean distance in the original N-dimensional feature space between an orig-
inal pattern and its reconstructed version obtained by expansion with respect to the M
principal components (‘reconstruction error’), This does not necessarily mean that the
information needed for classification is as well preserved in an optimal manner; in many
practical applications, however, the PCA algorithm turns out to yield a very reasonable
performance, Difficulties may again arise in the case of very high-dimensional patterns,
i.e. large values of N, as this leads to problems concerning numerical stability when
trying to diagonalize the covariance matrix € by standard numerical methods such as
the Jacobi algorithm.

A further technique for dimensionality reduction that is specially adapted to process
image or image sequence data consists of an extension of the previously described
ATDNN algorithm. Apart from using the ATDNN ‘standalone’ as a classification
module after training, we can as well regard the activation values ol the neurons
in the second layer as feature vectors to be processed. e.g. by the first three described
classification techniques. For this purpose we employ a slightly simplified version of
the ATDNN with integer-valued temporal extensions of the receptive fields (sec Wohler
and Anlauf, 1999a). The ATDNN then serves as a preprocessing module that reduces
the dimension of the input patterns (Wohler et al., 1999a). Especially, we combine the
ATDNN in this manner with the RBF classifier for traffic sign recognition and with
support vector machines for pedestrian recognition.

6.4.2 Trafficlights andsigns

Traffic signs
We have developed traffic sign recognition systems for highways as well as urban
traffic. As an example, the recognition of circular traffic signs, i.e. speed limits, passing
restrictions, and related signs for ending restrictions (see Figure 6.22) is presented here.
Grey-scale images of size 360 x 288 pixels are the basis for the investigation. The
extracted regions of interest are scaled to 16 x 16 pixels and normalized in contrast.
The general traffic sign class can be split up into 5 or 12 subclasses as shown in
Figure 6.23.




Principles and applications of computer vision for driver assistant systems

274 277 B og1 | e

274i fI: 278 ,_1;;1"' -‘ 281i @

276 El'] 278i Il;._t_ 282 @

o e -

E i b
277 ' 280 I: 282 o

— - ' -

Fig. 6.22 The examined traffic sign classes with their labels according to German law.
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Fig. 6.23 Composition of the training set,

The RBF classifier is trained to the five traffic sign subclasses and one garbage
class only. For RBF networks the number of subclasses does not influence the recog-
nition performance or the computational complexity of a classification cycle. A two-
dimensional version of the ATDNN for processing single images is used to reduce the
dimension of the original input patterns from 256 to a valuc of 64.

A combination of principal component analysis (PCA) and polynomial classifier is
used as a reference technigue that is well known from applications in the field of text
analysis, especially handwritten digit recognition (see Franke (1997)). The polynomial
classifier is applied to the 2, 6, and 13 class split up; here it turned out that the
recognition performance as well as the computational complexily is rising with the
number of subclasses, The dimension of the original input patterns is reduced by PCA
to values of 40 and 50, respectively.

Concerning the recognition performance, the most interesting point is the trade-off
between the false positive rate versus the rate of traffic signs that are rejected or
explicitly classified as garbage. The corresponding results obtained from about 7000
separate test samples are shown in Figure 6.24. The errors among the various traffic
sign subclasses are always smaller than 0.1 per cent. As a general result it comes out
that the polynomial classifier yields a slightly higher overall recognition performance
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Fig. 6.24 ROC curves on the test set for several classifier settings.

Fig. 6.25 The false positives yielded by a second degree polynomial classifier applied to 50 features obtained
by PCA.

than the RBF classifier. For our real-time application, however, we choose so far
the RBF network, since it is almost completely implemented by fast table look-ups
such that one classification process needs only about 3 milliseconds of CPU time
on the Pentium 11 system of our test vehicle. Moreover, it is simpler with the local
RBT network method to take into account special garbage patterns which are very
close Lo the speed limit signs in feature space. An example is the bus stop ("H") sign
appearing in Figure 6.25. Adding 4 number of such examples to the training set creates
a rather limited ‘island’ in feature space for this pattern with speed limit sign clusters
around it.

The recognition of speed limits has to be further extended as generally one wants
to know not only that there is a speed limit but also what is the maximum allowed
speed. We thus added a sccond classification stage to read the inlays, i.e. the numbers
on the traffic signs, which is activated when the first classification stage described
above has recognized a speed limit sign. The dimension of the input patlerns Is
again reduced by the two-dimensional ATDNN version for single images. One clas-
sification process needs only about 0.5 milliseconds of CPU time on the Pentium 11
system of our test vehicle. For a rate of 0.4 per cent of incorrectly classified inlays,
92 per cent of the inlays are correctly classified, with the remaining samples being
rejected.




Principles and applications of computer vision for driver assistant systems 169

Traffic lights

Tralfic lights arc detected using the colour segmentation techniques described in
Section 6.5. The detection stage is extracting blobs in the traffic light colours red,
yellow and green; around each blob a region of interest (ROI) is cropped that contains
not only the blob itself but also, if a traffic light has been detected, the dark box
around it, The size of the ROI is thus related to the size of the detected blob. As the
colour of the traffic light candidate is already known by the segmentation procedure,
classification is performed based on the grey-scale version of the ROI only.

The ROI is first scaled to a size of 32 x 32 pixels. In order to enhance the contrast
between the box of the traffic light and the background. which is often very weak, we
perform a local contrast normalization by means of a simulated Mahowald retina (see
Mead (1985})). We have three training and test sets, onc for red, one for yellow, and
one for red-yellow traffic lights. as shown in Table 6.1.

As our colour camera displays most green traffic lights as white blobs we could not
generale a large set of well-segmented green traffic lights; on the detection ol a green blob,
we thus [lip the corresponding ROI at its horizontal axis and classify this flipped ROI
with the module designed lor red traffic lights. This workaround will of course become
obsolete with a high dynamic range colour camera of a sufficiently high resolution.

The recognition performance of the three classification modules for the different
traffic light types is very similar, such that in this summary we only present the ROC
curve of the classification module for red (raffic lights. We compare the performance
of the two-dimensional version ol the ATDNN with spatial receptive fields of size
Ry = R, = 13 pixels, applied at an otfset of D, = Dy = 6 pixels, to the performance
ol a first and second order polynomial SVM and a linear polynomial classifier thal have
all been applied dircetly Lo the preprocessed ROTs of size 32 x 32 pixels (Figure 6.26).
[t becomes very obvious that with respect to the recognition performance, the ‘local’
ATDNN concept of spatial receptive fields is largely superior to ‘global’ approaches
not explicitly taking into account the neighbourhood of the respective pixel. Both the
first and the second order polynomial SVM separate the training sct with only one
error; we obviously observe overfitting effects due to systematic differences between
training and test set which illustrate a very low generalization capability of the global
approaches in this special application.

6.4.3 Pedestrian recognition

Single images

Possible pedestrians in the scene are detected by applying the stereo vision algorithm
described in Section 3.1. Around each detected object an image areda (ROI) of Im

Table 6.1
Training sel Test set
Traffic lights garbage Sum Traftic lights garbage Sum
Red 34) 1925 2465 172 40 572
Yellow 2497 1292 1584 a0 400 480

Red-yellow 305 1292 1687 S0 ) 480
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Fig. 6.26 Recognition performance of several classification modules for red traffic lights on the test set.

Fig. 6.27 Observing a traffic light at a crossing,

width and 2 m height, taking into account the object distance, is cropped, such that
if the object is a pedestrian the resulting bounding box circumscribes it. These ROIs
are scaled to a size of 24 x 48 pixels but not further preprocessed. Typical training
samples are shown in Figure 6.28. The training set consists of 1942 pedestrian and
2084 garbage patterns, the test set of 600 pedestrian and 907 garbage patterns. The
two-dimensional version of the ATDNN is again used for classification. Combining the
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Fig. 6.28 Typical training samples for pedestrian recognition on single images.
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Fig. 6.29 ROC curves of the single image ATDNN on the test set.

ATDNN with a polynomial SVM of order 2 and 3 does not increasc the recognition
performance (see Figure 6.29).

The single image ATDNN tends to incorrectly classify vertically elongated shapes
such as pedestrians to the extent that it should be combined with more complex
approaches. The recognition result is thus only accepted if the network is rather ‘sure’
to have made a correct decision (see Figure 6.30), i.c. it the network output is lying
well inside the pedestrian or the garbage region in decision space. Intermediate network
outputs are regarded as a “‘don’t know’ state. It the stereo vision algorithm detects no
lateral motion of the object, the chamfer matching algorithm is activated, otherwise
the full image sequence version of the ATDNN is used to more reliably classify the
object based on combined shape and motion features. The single image ATDNN acts
as a very fast preselection stage (the CPU time per classification process is about
1ms) that eventually triggers computationally more complex classification modules.
This decision structure is illustrated in Figure 6.30.

Image sequences
After detection of an object spatially emerging from the background by the stereo
vision algorithm, we crop the lower half of the ROI delivered by the stereo vision

17
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Fig. 6.30 Decision structure of the system for pedestrian recognition.

Fig. 6.31 Typical pedestrian (left) and garbage patterns (right}.

algorithm, which will contain the pedestrian’s legs, and normalize it to a size of
24 x 24 pixels. The time step between two subsequent frames of the sequence is 80 ms.
Eight subscquent normalized ROIls arc ordered into an image sequence covering a
temporal range thus approximately corresponding 1o one walking step. After each stereo
detection procedure, the baich of images is shifted backward by one image, discarding
the “oldest’ image while placing the new image at the first position, resulting in an
overlap ol seven images between two sequences acquired at subsequent time steps. By
a tracking algorithm based on a Kalman filter framework which is combined with the
stereo vision algorithm it is guaranteed that each image of an input sequence displays
the same object (see also Wohler et al., 1998). Our aim is again to distinguish between
pedestrian and garbage patterns, resulting in two training classes typical representatives
of which are shown in Figure 6.31. Our training set consists of 3926 pedestrian and
4426 garbage patterns, the test set of 1000 pedestrian and 1200 garbage patterns. It
turned out that the performance on the test sel is best for Nep = 2 network branches
and spatio-temporal receptive fields of a spatial size of R, = Ry =9 pixels, applied
at an offset of D, = D, = 5 pixels. We performed seven training runs with different
initial configurations of the time delay parameters, resulting in four “optimal” ATDNN
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Fig. 6.32 ATDNN architectures corrasponding to the approximate values of the learned temporal extensions

of the respective fields, resulting from the seven performed training runs. The connections drawn as dashed
lines only exist for Ry = 3.

architectures as depicted in Figure 6.32, the ROC curves of which are shown in
Figure 6.33. Obviously, for the configuration g = TE},) — | (training run 2) the lack
ol a temporal receptive field structure significantly reduces the recognition performance.

According to Wohler and Anlauf (1999a), we trained a TDNN with fixed time
delay parameters derived [tom the configuration on the upper right in Figure 6.32, the
ROC curve of which is also shown in Figure 6.33. The performance could be slightly
enhanced by combining this TDNN with a second and third order polynomial SVM
(see Figure 6.35); the length of the feature vector processed by the SVM is reduced to
Dieq = 128.

The recognition rates as given by Figures 6.33 and 6.35 refer to single input patterns
such that by integration ot the results over time our system recognizes pedestrians
in a very stable and robust manner. In Figure 6.34. typical scenes are shown. The
black bounding boxes have been determined by the stereo vision algorithm for the left
stereo image, respectively. In the upper part of the image, the input of the ATDNN,
.o the scaled ROT on the current and on the seven preceding images, is shown.
On the second sequence, a pedestrian and a garbage pattern arc detected simultane-
ously.
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Fig. 6.33 ROC curves on the test set for the ATDNN, with . = 2 (above) and R = 3 {below). The ROC curve
for the TDNN with R, = 5 and R, = 3 and fixed time delay parameters § = p = 1 is shown for comparison.

Global approaches versus local spatio-temporal processing
We will now compare the ATDNN approach based on local spatio-temporal feature
extraction by receptive fields and its combination with polynomial SVMs to standard
‘olobal’ classification approaches, i.e. polynomial SVMs applied directly to the image
sequences and after dimension reduction by principal component analysis (PCA).

For direct classification by a polynomial SVM the image sequence is regarded as
a pixel vector of length 24 x 24 x 8 = 4608. This approach is related to the one
described in Papageorgiou and Poggio (1999), where SVM classifiers are applied
to vectors consisting of temporal sequences of two-dimensional spatial Haar wavelet
features. We adapted a second and third order polynomial SVM to the training set
which could be perfectly separated in both cases. To reduce the very high dimen-
sion of the image sequences by PCA we took into account only the subspace of the
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Fig. 6.34 Recognition of pedestrians in an urban traffic environment.

D..q = 128 most significant eigenvectors, which we obtained by using the well-known
unsupervised perceptron learning technique known as ‘Oja’s rule” (Diamantaras and
Kung, 1996). We then adapted a second and third order polynomial SVM to the corre-
spondingly transformed training set, which again led to perfect separation in both cases.
The local ATDNN-based classification approaches are somewhat superior to the global
approaches with respect to their recognition performance on the test set (Figure 6.35).
Regarding computational complexity and memory demand, values which are of high
interest when it is intended to integrate the classification modules into real-time vision
systems running on hardware with limited resources, the local approaches are largely
more efficient, as becomes obvious in Figure 6.36.

6.4.4 Further examples

P R 8 e P A R B AR B e B B AR 8 B i s =l o AR PP

Recognition of rear views of cars

The two-dimensional version of the ATDNN used for object recognition on single
images as described in Sections 6.4.2 and 6.4.3 about traffic sign and traffic light
recognition and pedestrian recognition is furthermore used for the recognition of the
rear views of cars. This is an important application for intelligent stop-and-go, as before
focusing on an object to follow that has been detected by the stereo vision algorithm,
the system should be able to verify that it is indeed looking at the rear of a car. At
a false positive rate of 3% (06%), a fraction of 80% (90%) of rear views ol cars are
correctly classified. The recognition errors occur in a temporally uncorrelated manner.
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Fig. 6.35 ROC curves of the described classification modules for pedestrian recognition.
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Fig. 6.36 Computational complexity (left) and memory demand (right} of the classification modules for
pedestrian recognition. Note that the y axis is logarithmic.

As during autonomous car following the object to be followed is detected and tracked
for a rather long time, integration of the single image recognition results over time
yiclds a very stable behaviour of the system, recognizing all well-segmented cars and
producing a hardly noticeable rate of false alarms. The module is again very fast as it
requires less than 1 ms of CPU time per classilication process.
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Segmentation-free detection of overtaking vehicles

On motorways, our autonomous driving algorithm allows following the leading vehicle
not only in stop-and-go tratffic but also at speeds of up to about 130 km/h. To enable the
system to select a new leading vehicle driving at a higher speed than the current one,
it is necessary to have a system that permanently observes the left lane, assuming that
the ego-vehicle is driving on the right lane. A single wide-angle camera is sufficient
to perform this task; it 18 not necessary to employ stereo vision.

The input image sequences for the ATDNN are obtained by cropping a region of
interest (ROI) sized 350 x 175 pixels at a fixed position out of the left half of each half
frame, i.e. no segmentation stage is involved. This ROI is then downsampled to a size
of 32 x 32 pixels. As an overtaking process takes about one second and the grabber
hardware is able to grab, crop, and scale four ROIs per second, four subsequent ROIs
arc ordered into an image sequence, respectively, forming now an input pattern to the
ATDNN. An example of such an overtaking process as well as the ROC curve of
our system is given in Figure 6.37. Here, the rate ol correctly detected vehicles does
not reler Lo single patterns but to complete overtaking processes; the false positive rate
denotes the fraction between the time during which an overtaking vehicle is erroncously
detected and the time during which in facl no overtaking vehicle is present. Qur test
set corresponds to a 22 minules drive on the motorway in dense traffic, containing 150
overtaking processes. The lalse positive rate of the system can be reduced by an order
of magnitude by further analysing over time either the trajectory of the two ATDNN
output values in decision space or the temporal behaviour of an appropriately averaged
single output value by means of a simple second classification stage. This procedure
is described in detail in Waohler ef af. (1999b).

Driver assistance systems are challenging not only from the algorithmic but also from
the soltware architecture point of view. The architectures of most driver assistant
systems are usually tailored to a specific application, e.g. lane keeping on highways.
The functionality is achieved by a few computer vision and vehicle control modules,
which are connected in a hard-wired fashion. Although this kind of architecture 1s
suitable for a lot of applications, it also has some disadvantages:

The architecture is not scalable for a larger number of modules.

There is no uniform concept for the cooperation of modules (e.g. for sensor fusion).
New applications usunally require extensive re-implementations.

Reuse of old modules can be difficult due to missing interfaces.

Hard-wired modules cause great efforts in maintenance since the dependencies of
the modules are high. This is especially true for large systems.

The growing complexity of autonomous systems and our aim to realize a compre-
hensive assistance system hence reinforces the development of software architectures,
which can deal with the following requirements:

e integration and cooperation of various computer vision algorithms
o different abstraction levels of perception and action

177




178 Intelligent Vehicle Technologies

{a)
100 ' ' T T . . ;
= i ATDNN + analysis of trajectory in ]
= decision space §
% 90 ATDNN + analysis of averaged network output €]
= 4
@ -
=
£ o ]
£ = g
@ a7 ATDNN alone 1
o :
8 70p 4
g L 2 ;
g P | '
= | -
"g 60 |
5 L o ]
o L
50 L 1 1 L | L L L | L . .
0 4 8 12
(b) False positive rate (%)

Fig. 6.37 (a) Typical example of an overtaking process. (b) Detection performance of the ATDNN with and
without a second classification stage.

sensor [usion

economical use of resources

integration of new algorithms without a complete redesign of the system
simple enhancement to new computer vision applications

distributed computing.

To meet these requirements, a multi-agent system was developed. In our demonstrator
UTA 11, the “Agent NeTwork System” (ANTS) administrates computer vision, vehicle
control and driver interface processes (Gorzig and Franke, 1998). It selects and controls
these algorithms and focuses the computational resources on relevant tasks for specific
situations. For example, there is no need to look for new traffic signs or continuously
determine the lane position, while the car is slowing down in {ront of a red traffic light.

6.5.1 ANTS: a muiti-agent system

A A A 1 6 i P ik i R PR B RSN BA PSR

Agent software is a rapidly developing area of research. Since heterogencous research
is summarized under this term there is no consensus definition for ‘agent’ or ‘multi-
agent’ system. A working definition of a multi-agent system (MAS) can be defined as ‘a
loosely-coupled network of problem solvers that work together to solve problems that are

beyond their individual capabilities’ (O’Hare and Jennings, 1996). The smallest entity of

a MAS is an agent. An agent can be described as a computational entity, which provides
services and has certain degrees of autonomy, cooperation and communication.

N
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With these definitions it is not difficult to see how a MAS can be applied for
autonomous vehicle guidance. Each computer vision or vehicle control module contains
some functionality which can be useful for driver assistant systems. The combination of
these modules allows more complex applications like autonomous stop-and-go driving
in urban environments. The idea is to add the missing autonomy, cooperation and
communication to the modules to create a MAS.

The main components of ANTS are a distributed data base, the administrators and
the modules. Figure 6.38 visualizes the architecture.

The modules are the computational entities of the system, whereas the adminis-
trators contain the autonomy and the cooperation of the software agents. Combined
with the communication ability of the distributed data base they build the MAS as
described above. This distinction between a computational component and the “intel-
ligent” component of an agent has several advantages:

e The components can be exccuted in parallel.

e Existing software modules can be reused.

e The modification of one component does not necessarily require a modification of
the other components.

Although ANTS is a generic MAS for various applications, we will focus in the
following on driver assistance systems on our UTA II demonstrator and explain the
main components in more detail.

Distributed
Daiabase

Fig. 6.38 The components of ANTS,
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Distributed database

The central component of ANTS is the distributed database. 1t contains all incoming
and outgoing data of the modules and distributes it to the computational nodes. This
database typically contains information on the symbolic level and is used, e.g. for
driver information or for the cooperation of modules.

The database has several access methods for its data such as exclusive write and
concurrent read. For example, the stereo obstacle module can access its symbolically
represented results in the exclusive write mode to track old and detect new obstacles,
whereas the visualization module can access the results of all computer vision modules
concurrently to submit important information to the driver at the same time.

Modules

Each module (like the vehicle control module or the stereo obstacle detection) repre-
sents a computational entity. They can be distributed transparently on the available
computational nodes. The interface to a module encapsulates the infout data, the config-
uration parameters and the module function calls. This 15 useful in many ways:

¢ Rcuse of existing algorithms.

e [ndependence for the algorithm developers. They don’t have to care about ANTS
components like administrators or the distributed database.

e Application developers can reuse the existing modules to perform new applications |
without having detailed knowledge about the algorithms. |

Administrator

Autonomous and driving assistant applications are usually bound to specific situations,
c.g. autonomous lane keeping or a speed limit assistant arc useful on highways, whereas
autonomous stop-and-go driving can be used il you get stuck in a slow-moving tailback.
Some parts of the applications are common (e.g. the obstacle detection 1s useful in
several applications) and some are very specific for the current situation (e.g. there
is a lane detection algorithm for highways and another one for the city). So if you
want to implement more than one application you need a component to determine the
current situation and to adapt the system to the current situation: the administrators.
An administrator controls a set of modules (see Figure 6.39). He has to choose the
modules, that have to be executed in the current situation, and to give them to the
scheduler.

The actual module selection is done by filters and a decision component within
the administrator control. This control component is the core ‘intelligence’ of the
modules. The filters can be used for a pre-selection of the modules. For instance the
traffic light recognition and the arrow recognition modules can be filtered out while
the vehicle is driving on a highway. The decision component decides which of the
remaining modules has to be executed and parameterizes them. The results of the filter
and decision components depends on the current situation, i.e. the current database
entries. For example there can be more than one module for a certain task: a fast but
less precise obstacle tracking and a slower but more precise one. When a pedestrian
enters the scene, the fast variant is used 1o focus the computational resources on the
pedestrian detection. Otherwise, the slower one is more likely to be called.

The chosen modules are submitted to the scheduler. The scheduler communicates
with the modules and executes the module tasks on the specified computational nodes.
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Fig. 6.39 Administrator,

Due to the real-time constraint, all processes have already started waiting for messages
from the administrator. The initial static distribution of these processes is done in the
start-up phase of ANTS using script [iles.

ANTS can handle several administrators. Modules that do not belong together are
assigned to different administrators. This is useful o avoid complex decision compo-
nents. In UTA 1I there is (among others) onc administrator for the control of the
computer vision modules, one to obscrve the system status, and another one for the
driver interface modules.

An administrator can also handle exceptions in modules. A critical error within a
module is submitted to the administrator. The administrator can now decide to stop
the entire system, or just disable the affected module, in the case that it is not needed
for safe vehicle guidance or if multiple modules are available for the same task.

Configuration and cooperation
ANTS can be configured statically and dynamically. For the stalic configuration a script
file is parsed. The script causes the creation of the database including objects and the
administrators. The modules are distributed on the available nodes, parameterized and
started. The dynamic configuration is done by the administrators, as described above.
They allow to switch between modules during runtime. On highways, as mentioned, the
computer vision administrator can for example switch off the traffic light recognition.
If you want your vehicle to park, ANTS can activate totally different modules.
ANTS allows several kinds of cooperation. A module can depend on results from
other modules as well as results from several modules can be used to achieve a higher
accuracy. Figure 6.40) shows some cooperation examples of administrators and modules
we are using in UTA 11 to perform autonomous stop-and-go driving.
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Fig. 6.40 Cooperation of modules and administrators.

The distributed databasc is used for data transfer (arrows). The sterco objects are
transterred to the lane and to the crosswalk recognition. They mask the image to
avoid wrong detections, e.g. car tail-lights as lanes. The pedestrian recognition uses
more complex cooperation. Several pedestrian classifiers work together to improve the
reliability of the results. The pedestrian recognition administrator receives results from
the stereo module and organizes the recognition as described in Section 6.4.3.

6. 5 2 UTA II on the road

The Dmm}erf_htysler demonstrator UTA 11 (Lrban Traffic A%'-;ie.tdnt) was dem;,nt,d
with special attention for information, warning and intervention systems in an inner-
cily environment (see Figure 6.41). UTA 11 is an E-class Mercedes containing sensors

Fig. 6.41 The demonstrator UTA II.
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for longitudinal speed, longitudinal and lateral acceleration, yaw and pitch rate and the
steering wheel angle. It is equipped with a stereo black/white camera-system as well
as a colour camera. UTA II has full access to throttle, brake and steering.

The computer systems in UTA II are three 700 MHz Linux/Pentium 111 (SMP) PCs
for the perception of the cnvironment and one Lynx/604e PowerPC to control the
sensors and actuators. So far, five administrators for computer vision, pedestrian recog-
nition, driver interface (visualization), driving phase determination and a system status
watchdog have been integrated.

Most of the integrated computer vision modules have been described above. Cur-
rently, the following modules can be activated:

e sterco-based object detection and tracking
e pedestrian recognition based on:
- neural network (for standing pedestrians)
— time delay neural network
— chamfer matching
¢ lane detection and tracking:
- on the highway
— in the cily
e tralfic signs based on:
— colour images (sec Ritter ef al., 1995)
— black/white 1mages
traffic light recognition
recognition ol road markings
crosswalk recognition
vehicle classification
vehicle control (lateral/longitudinal)
driver interface (2D/3D visualization).

Figure 6.46 shows a view out of UTA TI. You can see the stereo camera system mounted
behind the windscreen. The visualization on the monitor is enlarged in Figure 6.43.

Fig. 6.42 View out of UTA I,
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Fig. 6.43 Animated scene showing the recognized objects and their positions in the world.
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Fig. 6.44 Diagram of autonomous stop-and-go driving. Notice the small distance error when the leader stops.

It shows the objects recognized by UTA 1l the detected lane, the obstacle in front
classified as a car, obstacles classified as pedestrians, a tratfic light and a traffic sign.
Tharks to stereo vision, the scene reconstruction is geometrically correct.

The main application of UTA Il is autonomous stop-and-go driving in an inner-
city environment. Once the car in the visualization turns red, the driver can switch
the system on. From now on. the own car follows the car in front laterally and
longitudinally. Figurc 6.43 shows the results of a test drive in the city of Esslingen,
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Germany. The graph shows the measured and desired distance to the car in front as
well as our own speed and the estimaled speed of the lead vehicle. The latter distance
is composed of a safety distance of 10 metres and a time headway of one second. The
speed profile shows three stop-and-go cycles.

Over the past ten years, computer vision on board vehicles has evolved from rudi-
mentary lune keeping on well structured highways to scene understanding in complex
urban environments. In this chapter, we described our effort to increase the robustness
on highways and to develop a next-generation cruise control called Intelligent Stop-&-
Go, which takes into account relevant elements of the traffic infrastructure and other
traffic participants while allowing autonomous vehicle control.

What did we learn during this time? At least three guiding principles have emerged
for robust vision-based driver assistant systems:

First, vision in cars is vision over time. Kinematic and dynamic constraints applying
to vehicles can be taken into account by means of Kalman filters. Obstacle candidates
can be tracked over time. The repeated recognition stabilizes the decisions and allows
the estimation of their motion state. A high imaging rate simplifies the establishment
of object correspondences.

Sccond, stereo vision providing 3D information became a central component of
robusl vision systems. It allows the detection of arbitrary obstacles and the determina-
tion of their size and position. Monocular model based approaches as investigated in
the early 1990s turned out to be less robust and reliable in the traffic scenario.

Third, object recognition can be considered as a classification problem. Powerful
tools are at hand for the adaptation of generic classification schemes to a specific task,
as described in Section 6.4. Developers are no longer forced to formulate heuristics but
the relevant aspects of the considered objects are learned from representative examples.

In spite of the achieved success many problems related to reliability remain to
be solved. Besides continuous improvement of the robustness of the image anal-
ysis modules, sensor problems have to be overcome. Standard CCD cameras lack
the dynamic range that is necessary to operate in traffic under adverse lighting condi-
tions (e.g. allowing the camera to capture structure in shadowed arcas when exposed
to bright light). CMOS camera technology can be of help.

As other information sources like radar, digital maps and communication become
available in modern cars, their utilization will help to raise the performance ol vision
based environment perception. It will be a challenge to combine the power of each
source in order to obtain a most reliable and complete interpretation of the current
traffic situation.

Nevertheless, we are convinced that vision will be the key component of intelligent
vehicles.

First vision products on board vehicles are alrcady on the market: witness the Lane
Departure Warning System available in Mercedes and Freightliner’s trucks. Many more
will undoubtedly follow.

Thanks to the foreseeable performance improvement, the future will see systems
that assist the driver during his whole trip, from door to door.
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