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Abstract

This paper presents an iterative, EM-like framework for accurate pedestrian segmen-
tation, combining generative shape models and multiple data cues. In the E-step, shape
priors are introduced in the unary terms of a Conditional Random Field (CRF) formu-
lation, joining other data terms derived from color, texture and disparity cues. In the
M-step, the resulting segmentation is used to adapt an Active Shape Model (ASM), after
which the EM process alternates.

Experiments on the public Penn-Fudan pedestrian dataset suggest that our method
outperforms the state-of-the-art. We further provide results on a new Daimler pedestrian
dataset, captured from on-board a vehicle, which includes disparity data. This dataset is
made public to facilitate benchmarking.

1 Introduction
Person segmentation in images is a key computer vision problem in a number of application
domains, such as image editing, surveillance and intelligent vehicles. It facilitates higher-
level, semantic scene analysis (e.g. body part labeling, pose estimation, activity analysis)
and can enhance the person detection and localization performance in itself.

In this paper, we are interested in the case where persons are observed against a com-
plex and possibly dynamic backdrop. Such is the case when an intelligent vehicle captures
images of pedestrians while driving through an urban traffic environment. The large vari-
ety of pedestrian appearances, induced by viewpoint, pose, clothing and lighting, makes the
problem especially challenging. On the other hand, by focusing on a single object class, we
are in a position to introduce a fair amount of prior knowledge on how pedestrians appear
in images. We focus on the case where an external pedestrian detector acts as a front-end,
providing regions of interest (i.e. bounding boxes) to our segmentation module. Given the
intelligent vehicle context, we are interested in the optional use of disparity data obtained
from stereo vision.

We present an iterative, EM-like framework, combining generative shape models and
multiple data cues. In the E-step, shape priors are introduced in the unary terms of a Condi-
tional Random Field (CRF) formulation, joining other data terms derived from color, texture
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Figure 1: Overview of our iterative EM-like segmentation framework, alternating CRF-based
segmentation (E-step) and SSM fitting (M-step), given shape initialisation. See Section 3.

and disparity cues. In the M-step, the resulting segmentation is used to adapt an Active Shape
Model (ASM), after which the EM process alternates. Fig. 1 shows an overview of the main
components of our approach.

2 Related Work
Data driven approaches [4, 7, 21, 22, 27, 29, 31] based on Conditional Random Field (CRF)
formulations [7, 21] show promising segmentation results. For example, the GrabCut frame-
work [27] involves segmentation with a minimum of user assistance based on an iterative,
pixel-wise Gaussian Mixture Models (GMMs) fitting. In order to generate more discrimi-
native and robust features, [22, 23, 29, 31] aggregate features over oversegmented regions.
Superpixel-based features based on dense SIFT (dSIFT), introduced by Bosch et al. [4], show
powerful results on a local level [22, 29]. Boosted Decision Trees (BDT) are used in [29] to
classify these features. A preliminary and necessary step for these methods is to cluster the
SIFT features to obtain a visual codebook representation. This is often done with k-means
(e.g. in [29]). As showed in [24], generating visual codebooks using Decision Trees is more
discriminative as using k-means. In [31] superpixel-based features (e.g. surface normals,
planarities, distance to camera path) are constructed from a dense depth map and classified
using Decision Trees.

Approaches matching shape models [2, 9, 10, 14, 15, 16] can be distinguished by whether
they use global or part-based shape representations. Global shape representations can be dis-
crete, in terms of a Set of Exemplars (i.e. shape templates from a training set). Hierarchical
representations can be derived on top of these for increased matching efficiency [15]. Active
Shape Models (ASMs) [10] combine Statistical Shape Models (SSMs) (compact, linear-
subspace probabilistic representations) with means to match these to images. [16] represent
shapes by multiple SSMs (MSSMs) to account for different shape aspects (pedestrian feet
apart vs. feet closed). Active Appearance Models (AAMs) [9] extend ASMs by capturing
shape and texture information jointly. ASMs and AAMs require feature correspondence,
unlike exemplar-based representations. Fitting them to an image can result in sub-optimal
solutions, due to convergence to local minima. Part-based representations, like pictorial
structures [2, 14] offer a modular representation; tree-structured graphical models can be
used for modeling the dependency between parts [2].
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In terms of combining object models with data driven cues [3, 8, 11, 19, 20, 26], a num-
ber of approaches [8, 13, 20] are based on GrabCut. Kumar et al. [20] introduces the Ob-
ject Category Specific CDRF (Contrast Dependent Random Field) and shows that multiple
shape potentials can be used by formulating a linear weighted sum of energies, which makes
solution by efficient methods (e.g. Graph Cut) still possible. Non-articulated objects are rep-
resented by a set of exemplars, which capture shape and appearance. For articulated objects,
a PS model is used. Interaction between parts is additionally modeled by a Markov Random
Field (MRF). A layer indicator for each part is added to handle occlusion. Based on multiple
views, Bray et al. [8] describes an iterative pose estimation approach using a stick model
joined with data cues in a CRF formulation (similar to [20]). Kokkinos and Maragos [19]
describe an EM segmentation framework, in which the segmentation result from the E-step
is used to estimate parameters of an AAM in the M-step. Eslami and Williams [11] describe
a generative framework based on a Shape Boltzmann Machine combined with appearance
cues. In [26], a Metropolis-Hastings sampler takes the results of an edge-based part detector
as starting point to generate proposals of each body part. Learned appearance histograms for
all parts are used for segmentation. Bo and Fowlkes [3] use hierarchical decomposition of
parts and compute scores of matching part-based mean templates with additional color cues.

3 Our Segmentation Framework

For an overview of our segmentation framework, see Fig. 1. Our iterative process starts
with a MSSM instantiation supplied by a shape initialisation module (Subsection 3.1). This
MSSM instantiation is used as shape potential, joining data-driven cues in a CRF-based seg-
mentation (Subsection 3.2), i.e. the E-step. The resulting binary segmentation allows to
update the parameters of the MSSM instantiation (Subsection 3.3), i.e. the M-step. The
process alternates until the CRF-based segmentation does not change appreciable any more
(average Hamming distance between subsequent segmentations is less than 10%) or a maxi-
mum of Nit iterations is reached.

We consider our main contribution to be the beforementioned iterative, EM-like frame-
work for accurate pedestrian segmentation, combining generative shape models and multiple
data cues. It is able to cope with the large variation of pedestrian appearances, across clut-
tered backgrounds. Our iterative segmentation framework is in spirit most related to that of
Kokkinos and Maragos [19]. However, our objects of interest, pedestrians, feature a larger
appearance variation than the frontal faces and sideway cars of [19]. We are thus unable to
deploy generative color/texture models like the AAMs, relying for these cues on discrimina-
tive classification of superpixels, within a CRF approach, among other data terms. We cope
with the stronger shape aspect variations using a MSSM. All in all, our E- and M-steps are
defined differently to [19].

3.1 Shape initialisation

Our shape training set consists of a set of NT = 10946 pedestrian shape exemplars, obtained
by manual labeling. A Multi Statistical Shape Model (MSSM) is derived from this training
set, based on shape registration and clustering, as described in [16]. A total of NC = 12
clusters are obtained; each involve a SSM for a particular shape aspect (frontal pose feet
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closed, rightwards feet open, etc.). The dimensionality of the linear subspace (i.e. the number
of eigenvectors) were chosen dynamically to cover 95% of total variance.

Input to shape initialisation is an image region of interest (i.e. a bounding box) provided
by a pedestrian detector front-end (optionally, this includes the associated disparity values).
As ASMs defined on SSMs can get stuck in local minima, template matching in the region
of interest is performed using the individual pedestrian shape exemplars. We use chamfer
matching differentiated by gradient direction (in our case: four discretization intervals, not
encoding the gradient sign), as in [15]. The best matching shape exemplar is converted to its
MSSM representation (SSM representation of respective cluster); it acts as a shape prior in
the following CRF segmentation step.

3.2 CRF segmentation (E-step)
In the following, we define Ii as the value in Lab [25] color space and Di as the disparity
value at pixel i. We use Semi Global Matching (SGM) [17] for disparity computation. Fur-
thermore, let Si be the feature vector of the superpixel containing pixel i. We now describe
the four unary and two pairwise potentials in our CRF formulation. One of these, the BDT
potential (see below), remains constant over the EM iterations, the others are being refined.

3.2.1 Defining the unary terms

Boosted Decision Tree superpixel classification (BDT): We use oversegmented regions
produced by SLIC superpixels [1] to train a BDT classifier as in [18]. For the classifier we
used NC = 100 trees pruned to a maximum depth of 10. Dense SIFT (dSIFT) are extracted
over the given image with a step width of four. We train a visual codebook similar to [24], but
instead of using fully Randomized Decision Trees, we use an ensemble of NV = 100 BDTs.
We prune each tree to get approx. 100 leaf nodes per tree. Our visual word is created from
all leaf nodes over the NV trees. At testing, a visual word vector contains NV one entries for a
tested feature. These vectors are summed up over the area of a superpixel. By this, we get a
histogram which captures a discriminative representation of a superpixel. Additionally to the
SIFT features we also use Textons, calculated similar to the dSIFT features. The resulting
Texton superpixel histogram is appended to the dSIFT superpixel histogram. This vector is
then used as classification feature.

The classifier output fB(Si) for the superpixel-based feature Si, is a log-likelihood ratio
score [18] which is used as potential in the CRF after sigmoid conversion:

ΨBDT (xi,Si) =−logP(xi|B,Si). (1)

where

P(xi = 1|B,Si) =
1

1+ exp(− fB(Si))
(2)

and P(xi = 0|B,Si) = 1−P(xi = 1|B,Si). Above B denotes our trained BDT classifier.
Shape Potential (SP): In the first iteration we directly use the shape template found

in the shape initialisation. We calculate a distance transformation from the shape contour
Ω - denoting with dist(loci,Ω) the distance of the pixel location loci on the grid, to the
nearest contour point on Ω. If pixel i lies inside the shape contour, dist(loci,Ω) is negative,
otherwise dist(loci,Ω) is positive (see also [20]).
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The resulting shape potential is

ΨSP(xi,Ω) =− logP(xi|Ω), (3)

where

P(xi = 1|Ω) =
1

1+ exp(µs ·dist(loci,Ω))
. (4)

and P(xi = 0|Ω) = 1−P(xi = 1|Ω). The parameter µs determines the penalization of points
outside, compared to points inside the shape. From the second iteration on, we use the actual
result of the previous iteration (binary image) for fitting the selected MSSM (see section 3.3).

Color Potential (CP): Based on the segmentation at the previous iteration (or the initial
shape at the first iteration), we fit two GMMs, one for background and one for foreground,
each with KC (here KC = 5) components in Lab color space. With the additional vector k =
{k1, ..ki, ..kN} we assign each pixel a unique component with ki ∈ {1, ..,KC} for foreground
(xi = 1) or background (xi = 0). This approach was successfully used in [27]. Thus the color
potential is defined as

ΨCP(xi,I) =− logP
(
Ii|xi,ki,θki

)
− logπ(xi,ki), with xi = {0,1}. (5)

Above, ki is the best component of the GMM chosen for pixel i with learned Gaussian pa-
rameters θki and component weight π(xi,ki).

Disparity Potential (DP): The disparity potential for the foreground is defined with one
Gaussian distribution

ΨDP(xi = 1,D) =− logP(Di|xi = 1,θd) (6)

with parameters θd = {d̃,σd}. Here d̃ denotes the median value over all disparity values
labeled as pedestrian in the current segmentation (xi = 1). The disparity variance σ2

d was
learned from data, over all pixels and their neighborhoods in the ground truth segmentation.

The background potential ΨDP(xi = 0,D) is modeled based on all disparity values Di
with values in the range Di < d̃ − 3σd and Di > d̃ + 3σd using a GMM as in the color
potential. Like in the color potential we select for each pixel only the best out of KD (here
KD = 3) components of the learned GMM.

3.2.2 Defining the pairwise terms

We define two pairwise potentials, which take the form of generalized Potts models [5]. The
first is a color-sensitive potential, specified such, that it increases the costs of an edge in-
versely proportional to the color difference in Lab color space of two neighbored pixels i and
j. The second potential is a contour-sensitive potential, which increases the cost inversely
proportional to the edge magnitude between pixels i and j. For the second potential we use
an additional weighting term based on disparity information. The resulting potentials have
the form:

Φ
C
P(xi,x j,I) = exp(

−||Ii−I j||
2σ2

c
)

1
dist(loci, loc j)

×δ (xi 6= x j) (7)

and

Φ
E
P(xi,x j,I,D) = exp(

−maxl∈i j[|∇Il | ·P(cl |U)]

2σ2
e

)
1

dist(loci, loc j)
×δ (xi 6= x j) (8)
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The variances σ2
c and σ2

e can be set according to the camera noise [7]. The notation i j
denotes the line containing all pixels between pixel i and j, while |∇Il | denotes the edge
magnitude at pixel l. The weighting term P(cl |U) in eq. (8) denotes the probability that
there is a pedestrian contour between i and j, given the contour points U = {u1,u2, ..,un} of
the disparity based segmentation. This disparity segmentation is calculated using the median
disparity d̃ over all pixels from the current segmentation, labeled as foreground. P(cl |U) is
defined with

P(cl |U) = exp(
−(mink[dist(locuk , locl)]−µd p)

2

2σ2
d p

), (9)

where loci denoting again the location of a given pixel i on the grid. We learned the mean
distance µd p (and variance σ2

d p) of disparity segmentation contours to the ground truth con-
tours from training data. The combination of these potentials forces consistent regions and
assigns a lower cost to edges that lie on true contours.

3.2.3 Energy minimization

We minimize following energy functional:

E(x,Ω,I,D,S,ω) = (10)

∑
i∈V

ωBDT ΨBDT (xi,S)+ωSPΨSP(xi,Ω)+ωCPΨCP(xi,I)+ωDPΨDP(xi,D)

+ ∑
i, j∈E

ω
C
P Φ

C
P(xi,x j,I)+ω

E
P Φ

E
P(xi,x j,I,D)

defined on the index set V with an eight-connected edge neighborhood E . The posterior
is defined with P(x,Ω|I,D,S,ω) = 1

Z exp(−E(x,Ω,I,D,S,ω), where Z is the partition
function. Main CRF parameters ω are the weights for the specified unary and pairwise terms
(ωBDT , ωSP, ωCP, ωDP, ωC

P and ωE
P ). As our pairwise terms stay submodular, we can perform

inference with Graph Cut [6].

3.3 Fitting the SSM (M-step)

We use an ASM approach [10] for fitting the SSM model to the obtained CRF segmentation.
Point correspondences between SSM and image are given by chamfer matching [15]. As
in shape initialisation (Section 3.1), we can differentiate chamfer matching by gradient di-
rection. But note that since we have a binary segmentation, we can here utilize information
about the gradient sign to improve matching (i.e. eight discretization intervals for gradient
direction).

4 Experiments

Segmentation accuracy is measured by the intersection/union criterium of the PASCAL VOC
challenge [12]. For evaluation, we use the public Penn-Fudan dataset [30]. It contains
170 color images with 345 box/shape-labeled pedestrians from which 169 labels are used
in [3, 11]. We use this same data subset. Due the scarcity of public available pedestrian

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 

Citation
Citation
{} 



F. FLOHR, D. M. GAVRILA: PEDCUT 7

Daimler [28]
(train BDT)

Daimler [this paper]
(validation/test)

Penn-Fudan [3, 30]
(test)

#images 300 228 169
#pedestrians 521 (sel. 521) 785 (sel. 30/300) 169 (sel. 169)
sel. min BB [h,w] no BB [121,34] pixel [186,63] pixel
sel. max BB [h,w] no BB [468,267] pixel [373,207] pixel
color no yes yes
disparity yes yes no

Table 1: Used datasets and their characteristics.
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a) b)
Figure 2: FG segmentation accuracy over EM iterations a) using various cue combinations
b) Dependence on shape initialisation (BDT+CP+SP)

segmentation datasets containing stereo and color information, we created a new Daimler
dataset (subdivided in validation/test subsets)1. See Table 1 for the used datasets.

Evaluation on the Penn-Fudan dataset. Fig. 2a) shows the FG segmentation accura-
cies using various cue combinations over the EM iterations (a similar plot applies for the
BG). The incorporation of SP can be seen to have a major beneficial effect. The benefit
of adding BDT is only substantial when SP is not available (compare blue vs. cyan, and
green vs. red plots). Fig. 2b) shows the dependence of segmentation accuracy on shape
initialisation (i.e. availability of good contrast object contours). Table 2 shows the results for
different cue combinations. A comparison with the state-of-the-art [3, 11] is given in Table
3. We achieve outperformance both in terms of foreground and background segmentation
accuracy. Fig. 3 shows representative segmentation results on the Penn-Fudan dataset with
the best performing cues BDT+CP+SP. We can use the available body-part label information
associated with SSM points to establish a basic component-based segmentation into head,
upper and lower body. Note that our results cannot be compared to [3] and [11] for the upper
and lower body, since they segment and label body components based on clothing, while we
do it on true body proportions. For head segmentation, a comparison is possible: we obtain
an accuracy of 57.1 compared to 51.8 [3] and 54.1 [11].

1This dataset is available for non-commercial research purposes. Follow the links from http://isla.science.uva.nl/
or contact the 2nd author.
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BDT CP BDT+CP SP SP+CP BDT+SP+CP

FG 42.8 64.3 67.1 67.2 77.5 78.5
BG 54.4 66.7 70.6 71.6 80.3 81.5

average 48.6 65.5 68.9 69.4 78.9 80.0

Table 2: Segmentation accuracy for various cue combinations on the Penn-Fudan dataset.

Ours (BDT+SP+CP) Bo & Fowlkes [3] Eslami & Williams [11]

FG 78.5 73.3 71.6
BG 81.5 81.1 73.8

average 80.0 77.2 72.7

Table 3: Comparison with the state-of-the-art on the Penn-Fudan dataset

a) b) c) d) e) f) g)
Figure 3: Results on the Penn-Fudan dataset after four EM iterations (BDT+SP+CP). First
row: input images with initial/final SSM fit (red/white). Second row: correct/missing/ex-
cessive segmentation (white/red/cyan). Columns: a)-d) decent segmentations from decent
shape initialisations, e)-f) decent segmentations from poor shape initialisations, and g) poor
segmentation from poor shape initialisation.

SP CP DP CP+DP SP+CP SP+DP SP+CP+DP

FG 68.9 60.2 63.8 70.2 73.5 67.8 76.4
BG 72.6 62.9 56.3 70.9 77.4 69.0 78.6

average 70.7 61.6 60.1 70.6 75.5 68.4 77.5

Table 4: Segmentation accuracy for different cue combinations without BDT on our dataset.
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BDT BDT+CP BDT+CP+DP BDT+CP+SP BDT+CP+SP+DP

FG 56.6 65.4 74.1 74.9 77.4
BG 59.7 68.1 75.2 78.2 79.6

average 58.1 66.7 74.6 76.5 78.5

Table 5: Segmentation accuracy for different cue combination with BDT on our dataset.

a) b) c) d) e) f) g)
Figure 4: Results on our dataset after four EM iterations (BDT+SP+CP+DP). First row:
input images with initial/final SSM fit (red/white). Second row: correct/missing/excessive
segmentation (white/red/cyan). Columns: a)-d) decent segmentations from decent shape
initialisations, e)-f) decent segmentations from poor shape initialisations, and g) poor seg-
mentation from poor shape initialisation.

Evaluation on our dataset. Tables 4 and 5 show results with different cue combina-
tions with and without the BDT classifier. When not having disparity data, the combination
BDT+CP+SP performs best, as in the Penn-Fudan case. Adding DP improves average seg-
mentation accuracy by 2%. Fig. 4 shows representative segmentation results on our dataset
with the best performing BDT+CP+SP+DP cues. Our unoptimized Matlab implementation
requires about 2 s for segmenting a pedestrian in four EM iterations, running on a 3.33 GHz
i7-CPU processor. Main bottleneck is the matching of templates during shape initialisation
(Section 3.1); we aim to replace this by the more efficient hierarchical approach of [15].

5 Conclusion
This paper presented an iterative, EM-like framework for accurate pedestrian segmentation,
combining generative shape models and multiple data cues. We showed the benefit of differ-
ent cue combinations and the ability of the framework to improve results with each additional
cue, on various datasets. On the public Penn-Fudan dataset, we showed to outperform the
state-of-the-art by more than 5% on foreground accuracy while remaining ahead on back-
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ground accuracy. Further work involves body-part labelling and pose estimation, as well as
enhanced pedestrian recognition.

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. SLIC superpixels
compared to state-of-the-art superpixel methods. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 34:2274–2282, 2012.

[2] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited: People detection
and articulated pose estimation. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 1014–1021. IEEE, 2009.

[3] Y. Bo and C. C. Fowlkes. Shape-based pedestrian parsing. In Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pages 2265–2272. IEEE, 2011.

[4] A. Bosch, A. Zisserman, and X. Munoz. Scene classification via pLSA. Proc. of the
European Conf. on Computer Vision (ECCV), pages 517–530, 2006.

[5] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient approxima-
tions. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 648–655. IEEE, 1998.

[6] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Trans. on Pattern Analysis and Machine Intelligence, 23(11):1222–1239,
2001.

[7] Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region seg-
mentation of objects in N-D images. In Proc. of the International Conf. on Computer
Vision (ICCV), volume 1, pages 105–112. IEEE, 2001.

[8] M. Bray, P. Kohli, and P. H. S. Torr. Posecut: Simultaneous segmentation and 3D pose
estimation of humans using dynamic graph-cuts. In Proc. of the European Conf. on
Computer Vision (ECCV), pages 642–655, 2006.

[9] T. Cootes, G. Edwards, and C. Taylor. Active appearance models. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 23(6):681–685, 2001.

[10] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active shape models-their training
and application. Computer Vision and Image Understanding, 61(1):38–59, 1995.

[11] S. A. Eslami and C. Williams. A Generative Model for Parts-based Object Segmenta-
tion. In Advances in Neural Information Processing Systems (NIPS), pages 100–107,
2012.

[12] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The PAS-
CAL Visual Object Classes (VOC) Challenge. International Journal of Computer Vi-
sion, 88(2):303–338, 2010.

[13] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction
for human pose estimation. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 1–8. IEEE, 2008.

[14] M. Fischler and R. Elschlager. The representation and matching of pictorial structures.
IEEE Transactions on Computers, 100(1):67–92, 1973.

[15] D. M. Gavrila. A Bayesian, exemplar-based approach to hierarchical shape matching.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 29(8):1408–1421, 2007.

[16] J. Giebel and D. M. Gavrila. Multimodal shape tracking with point distribution models.
Pattern Recognition, pages 1–8, 2002.

[17] H. Hirschmüller. Stereo processing by semiglobal matching and mutual information.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 30(2):328–341, 2008.



F. FLOHR, D. M. GAVRILA: PEDCUT 11

[18] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from an image.
International Journal of Computer Vision, 75(1):151–172, 2007.

[19] I. Kokkinos and P. Maragos. Synergy between object recognition and image segmen-
tation using the expectation-maximization algorithm. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 31(8):1486–1501, 2009.

[20] M. Kumar, P. Torr, and A. Zisserman. Objcut: Efficient segmentation using top-
down and bottom-up cues. IEEE Trans. on Pattern Analysis and Machine Intelligence,
32(3):530–545, 2010.

[21] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. Proc. of the International Conf. on
Machine Learning (ICML), pages 282–289, 2001.

[22] D. Larlus and F. Jurie. Combining appearance models and markov random fields for
category level object segmentation. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 1–7. IEEE, 2008.

[23] A. Monroy and B. Ommer. Beyond Bounding-Boxes: Learning Object Shape by
Model-Driven Grouping. Proc. of the European Conf. on Computer Vision (ECCV),
Part 3:580–593, 2012.

[24] F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks using
randomized clustering forests. Advances in Neural Information Processing Systems
(NIPS), 19:985–992, 2007.

[25] M. Pointer. A comparison of the CIE 1976 colour spaces. Color Research & Applica-
tion, 6(2):108–118, 1981.

[26] I. Rauschert and R. Collins. A Generative Model for Simultaneous Estimation of Hu-
man Body Shape and Pixel-Level Segmentation. Proc. of the European Conf. on Com-
puter Vision (ECCV), pages 704–717, 2012.

[27] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction
using iterated graph cuts. Proc. of the ACM Transactions on Graphics (SIGGRAPH),
23(3):309–314, 2004.

[28] T. Scharwächter, M. Enzweiler, U. Franke, and S. Roth. Efficient Multi-Cue Scene
Segmentation. In Lecture Notes in Computer Science (Proc. of the German Conf. on
Pattern Recognition (GCPR)), volume 8142. Springer, 2013.

[29] J. Tighe and S. Lazebnik. Superparsing. International Journal of Computer Vision,
101(2):329–349, 2013.

[30] L. Wang, J. Shi, G. Song, and I.-F. Shen. Object detection combining recognition and
segmentation. In Asian Conf. on Computer Vision, pages 189–199. Springer, 2007.

[31] C. Zhang, L. Wang, and R. Yang. Semantic segmentation of urban scenes using dense
depth maps. Proc. of the European Conf. on Computer Vision (ECCV), pages 708–721,
2010.


