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1. THE PROBLEM

More than 430.000 pedestrians are injured and 39.000
killed yearly in traffic worldwide, see Table 1. For the
European Union (EU), the corresponding numbers are
155.000 and 6000, see Table 2. Pedestrian accidents
represent the second largest source of traffic-related in-
juries and fatalities, right after accidents involving car
passengers. Especially children prove to be at risk, in
situations such as shown in Figure 1.

The magnitude of the problem has meanwhile caught
the attention of the legislative branch. The EU, for ex-
ample, is studying proposals for legislating maximum
tolerated pedestrian ”impact coefficients” in the unfor-
tunate event of the latter being hit frontally by a ve-
hicle. Two classes of impact coefficient are considered,
one involving the primary impact area, the (lower- and
upper-) legs, and the other involving the more dan-
gerous secondary impact area, the (child- and adult-)
pedestrian head, at vehicle speeds of 40 km/h. Many
aspects of such a specification are still subject of con-
siderable debate. Among the open issues is whether a
component-based crash test, where separate impactors
are hurled towards the vehicle, can adequately model

Figure 1: A typical dangerous situation: a child sud-
denly crossing the street

the kinematics of a human body during a crash. An-
other issue involves the large variation in pedestrian
kinematics itself, when comparing a child and an adult,
with widely different centers of mass at impact. Op-
timizing for the adult case can make things worse for
the child case and vice versa.

While final test procedures and numbers have not
materialized yet, it is clear that, because of the widely
different object properties between pedestrians and ve-
hicles, the room for improvement, in terms of energy
absorption during a crash, is certainly limited. Oppos-

Killed Injured Total Killed Injured Total

Passenger Cars | 75.615 | 3.751.024 | 3.826.639 Passenger Cars | 22.502 995.026 | 1.017.528
Pedestrians | 39.670 | 436.422 | 476.092 Pedestrians 6.049 | 155.151 | 161.200
Bicycles 6.872 236.027 242.899 Mopeds 2.421 141.870 144.291
Mopeds 3.151 163.854 167.005 Bicycles 2.385 139.442 141.827
Motor Cycles 10.972 227.946 238.918 Motor Cycles 3.821 124.023 127.844
Other 28.397 | 1.303.571 | 1.331.968 Other 4.559 121.816 126.375
Total 161.677 | 6.118.844 | 6.283.521 Total 41.737 | 1.677.328 | 1.719.065

Table 1: Road Traffic Accidents 1997 - Figures for UN-
ECE Countries (Accident Source: UN-ECE)

Table 2: Road Traffic Accidents 1997 - Figures for EU
(Accident Source: UN-ECE)



ing demands are placed on vehicles; in addition to being
?pedestrian-friendly”, they should also perform well in
crashes with "hard” objects, such as other vehicles and
trees, and be appealing from a design point of view.
Vehicle manufacturers are addressing these challenges
by looking into extendable vehicle body structures (i.e.
bumper, motor-hood), to be activated upon first im-
pact with a pedestrian.

A complementary approach is to focus on sensor-
based solutions, which enable vehicles to ”look ahead”
and detect pedestrians in their surroundings. This ar-
ticle probes the state-of-the-art in this domain, review-
ing video-based approaches as well as approaches that
involve active sensors (e.g. radar, laser range finders).

2. VIDEO-BASED APPROACHES

The use of video sensors comes quite natural for the
problem of people detection. Texture information, pro-
vided at a fine angular resolution, enables the use of
quite discriminative pattern recognition techniques. The
human visual perception system is perhaps the best ex-
ample of what performance might be possible with such
sensors, if only the appropriate processing is added.
Besides, for practical purposes, video cameras are cheap
and because they do not emit any signals, there are no
issues regarding interference with the environment.

An extensive amount of computer vision work exists
in the area of ”Looking-at-People”, see [9] for a recent
survey. What makes the pedestrian recognition appli-
cation on-board vehicles particularly challenging is the
moving camera, the wide range of possible pedestrian

appearances and the cluttered (uncontrolled) backgrounds

that are involved. Most work on vision-based pedes-
trian recognition has taken a learning-based approach,
bypassing a pose recovery step altogether and describ-
ing human appearance in terms of simple low-level fea-
tures from a region of interest. One line of work has
dealt specifically with scenes involving people walking
laterally to the viewing direction, either using the pe-
riodicity cue [6, 16] or by learning the characteristic
lateral gait pattern [12].

A crucial factor determining the success of learning
methods is the availability of a good foreground re-
gion. In contrast to applications such as surveillance,
where the camera is stationary, standard background
subtraction techniques are of little avail here because
of the moving camera. Independent motion detection
techniques can help [16], although they are difficult to
develop, themselves. Yet, given a correct initial fore-
ground region, some of the burden can be shifted to

tracking [1, 4, 5, 12, 15, 17]

A complementary problem is to recognize pedestri-
ans in single images; this is particularly relevant for
the case of a pedestrian standing still. One general ap-
proach involves shifting windows of various sizes over
the image, extracting low-level texture features, and
using standard pattern classification techniques to de-
termine the presence of a pedestrian. For example,
[14] uses wavelet features in combination with a Sup-
port Vector Machine (SVM) classifier. More recently,
this work has been extended to involve a component-
based approach [13]. However, pure brute force win-
dow sliding approaches currently do not demonstrate
performance-speed characteristics suitable for use on-
board vehicles. The system described in [10] called
the Chamfer System, addresses this by using a two-
step approach for object recognition. In the first step,
contour features are used in a hierarchical template
matching approach to efficiently ”lock” onto candidate
solutions using distance transforms. By capturing the
objects shape variability by means of a template hier-
archy and using a combined coarse-to-fine approach in
shape and parameter space, this method achieves very
large speed-ups compared to an equivalent brute-force
method. Only in the second step it reverts to texture-
based pattern classification, on the candidate solutions
provided by the first step. Another powerful technique
to establish regions of interest (ROIs) is stereo vision.
It is used in [8, 20] combination with texture-based pat-
tern classification. Work in [2] also uses stereo vision,
but prefers to combine it with a verification technique
based on symmetry properties.

Lately, there has been increased interest in video
sensors which operate outside the visible spectrum. Long-
time used exclusively in the military domain, infra-red
sensors are finding their way into civilian applications;
a development aided by the advent of cheaper, uncooled
cameras. The principle of detecting pedestrians by the
heat their bodies emit is very appealing indeed (e.g.
[18]). Yet pedestrians are not the only sources of heat
that can be observed in a traffic environment, vehicles
generate heat too. Even the pavement can appear hot-
ter on a summer day than the pedestrian body. Thus,
rather than offering the solution for pedestrian detec-
tion per se, infra-red sensors provide means to simplify
the segmentation problem. Still required are the pat-
tern recognition techniques discussed before.



3. OTHER SENSOR APPROACHES

Video sensors do not directly provide depth informa-
tion; stereo vision derives depth by establishing feature
correspondence and performing triangulation. Active
sensors, such as radar and laser range finder, on the
other hand, measure distances directly. Radar has al-
ready been introduced commercially in the vehicle do-
main for adaptive cruise control applications (e.g. Dis-
tronic System on-board Mercedes-Benz’s S-Class). For
near-distance applications, such as pedestrian detec-
tion, ongoing investigations focus on 24 Ghz radar tech-
nology [11]. Object localization is enhanced by placing
multiple radar sensors on the relevant parts of the vehi-
cle and employing triangulation-based techniques. Ob-
ject classification, i.e. distinguishing pedestrians from
other objects such as cars and trees, is achieved by ex-
amining the power spectral density plot of the reflected
signals. Spectral content and reflectivity are the ob-
ject properties to consider in this context. Objects of
smaller spatial extents, such as pedestrians, have nar-
rower peaks in the plot than, say, cars. At the same
time, material properties of the object’s surface deter-
mine the strength of reflected radar signals. Metal-
lic parts of cars and other vehicles reflect much better
than human tissue, by at least an order of magnitude.
Human tissue, in turn, reflects much better than non-
conductive materials, such as the wood of trees.

Eye-safe laser range finders offer other promising
means for obstacle detection. Their main appeal lies in
their fast and precise measurement of depth and their
large field of view. For example, the laser range finder
described in [11] has a depth accuracy of +/- 5 cm up
and a range of 40 m for objects with at least 5% reflec-
tivity (this includes most, if not all, relevant targets).
Furthermore, its horizontal scans cover a 180 degree
field of view in increments of 0.5 degree at 20 Hz, mak-
ing the sensor especially suitable to cover the area just
in front of the vehicle.

4. CURRENT SYSTEMS

At least three pedestrian systems are currently inte-
grated on-board vehicle demonstrators [2, 8, 20]. All
three are are video-based and use a two-step detection-
verification framework for efficient pedestrian recogni-
tion; the region of interest is invariably provided by
stereo vision.

The Carnegie Mellon University system [20] com-
bines stereo vision with a neural-network pattern clas-
sification approach. The texture features used for clas-

sification are obtained by applying a high-pass filter to
the region of interest and normalizing for size. Their
system, running at 3-12 Hz, is in particular aimed at
assisting bus drivers in urban traffic. It will later be
expanded to cover the sides of the bus, and eventually,
to provide full 360 degree coverage.

The University of Pavia system [2], implemented
in the ARGO experimental autonomous vehicle, com-
bines stereo vision with template matching techniques
for detecting pedestrian head/shoulder shapes. Candi-
date regions are verified using vertical symmetry con-
siderations. The authors report good detection results
in a distance range of 10-40 meter.

At DaimlerChrysler, we have been working on pedes-
trian recognition as part of our multi-year effort to ex-
tend driver assistance beyond the highway scenario into
the complex urban environment [8, 7, 10, 12]. Of spe-
cial interest has been the so-called Intelligent Stop&Go
on-board our Urban Traffic Assistant (UTA) demon-
strator (for the latter, see Figure 2). It allows UTA to
autonomously follow a lead vehicle, while being aware
of relevant elements of the traffic infrastructure (e.g.
road lanes, traffic signs, and traffic lights) and other
traffic participants. Our most recent pedestrian de-
tection system consists of stereo vision-based obstacle
detection, and shape-based object classification with
the Chamfer System [10] (see Section 2. The reader
is referred to web site www.gavrila.net for a few video
clips.

Figure 2: DaimlerChrysler’s Urban Traffic Assistant
(UTA) demonstrator

The above systems will soon be joined by others.
The EU has recently initiated a major initiative for
pedestrian protection under the fifth-framework project
PROTECTOR [3, 11]. It brings together major vehicle
manufacturers, sensor suppliers and research institu-
tions, in order to develop intelligent systems on-board
vehicles for the reduction of the accident rate involv-



ing pedestrians, bicyclists and other unprotected traffic
participants. Among the tasks already completed is the
analysis of accident statistics and the definition of rel-
evant traffic scenarios. Three different sensor technolo-
gies are pursued, radar and laser range finder and video,
to be implemented on two passenger cars (FIAT and
DaimlerChrylser) and one truck (MAN). Final systems
will be evaluated on a test track under standardized
and realistic conditions (i.e. using dummies), sometime
in 2002. User interface and user acceptance studies will
conclude this project.

5. THE ROAD AHEAD

Success or failure of a pedestrian safety system, from a
technical point of view, will very much depend on the
rate of correct detections versus false alarms that it pro-
duces, at a certain processing rate and on a particular
processor platform. But what rate will be needed for
actual deployment of a sensor-based pedestrian system
? The question is difficult to answer because desired
rate will very much depend on the final system con-
cept. If, for example, the system concept only involves
a warning function, performance criteria will likely be
less stringent than for the case which involves active
vehicle control.

Perhaps it is then easier to establish where we cur-
rently stand regarding performance. For this purpose,
let us pursue the following thought experiment. Con-
sider a (fictional) video-based pedestrian detection sys-
tem which involves a succession of three components:
stereo-based obstacle detection, template-based shape
matching and texture-based pattern classification. For
argument’s sake, assume that the performance of each
individual component is independent of the others. We
conservatively estimate that, in order not to miss any
pedestrians, the stereo component will produce 1 pedes-
trian ROI per 10 seconds, when tested in urban traf-
fic (in lieu of hard experimental data, we use a value
derived from our experience). We assume that the
stereo component accomplishes this by employing sim-
ple heuristics regarding sizes and locations of the rect-
angular regions it detects as obstacles. Since we cannot
expect the pedestrian ROI to be exactly outlining the
pedestrian, we assume that 10 probes are needed to ex-
tract the pedestrian correctly. For the shape-based and
texture component we estimate a detection rate of 95%
at a false positive rate in the order of 1073 and 10!
per candidate region, respectively, based on the figures
cited in [10, 14] and [20]. All in all, we arrive, in this
best case scenario, at a false positive rate of 1 per 10*
seconds or 1 per 2.8 hours, for a detection rate of 90%.

Integrating results over time by tracking will improve
this figure somewhat, but this effect will be offset by the
lower filter ratios of the shape and texture components
which, in practice, cannot be considered independent.
Based on this, it is fair to say that the false positive rate
will need to be reduced by at least one order of mag-
nitude in order to obtain a viable pedestrian system,
while maintaining the same detection rate.

Fortunately, there are a number of ways to signifi-
cantly reduce the false positives rate. Improved multi-
cue video-algorithms, i.e. combining distance, shape,
texture, and motion cues, hold the promise to succes-
sively decimate the false alarm rate, as illustrated in the
previous paragraph. Large benefits are also expected
from sensor fusion, e.g. combining video and laser
range finder approaches. Finally, telematics concepts,
involving communication between pedestrian and vehi-
cles combined with GPS-based localization, could close
any remaining performance gap. Although it is unreal-
istic to expect people to buy special-purpose pedestrian
protection devices, pedestrian safety systems could pig-
gyback on the pervasiveness of the future communica-
tion infrastructure (e.g. UMTS, Bluetooth).

Challenges remain even after the pedestrian detec-
tion problem has been solved. After all, what is needed
is an assessment of the danger that a particular traf-
fic situation represents. This assessment will take into
account positional and speed information of pedestrian
and vehicle. But with larger look-ahead of the system,
beyond the pre-crash range, prediction quickly becomes
unreliable. Pedestrians can very easily change their
heading direction, furthermore, accurate risk assess-
ment will increasingly require good scene understand-
ing. For example, the danger associated with a pedes-
trian heading towards the street will very much depend
on the placement of the road boundaries, whether a
traffic light exists, and if so, whether it is green or not.
This suggests that, in the long run, a reliable and an-
ticipatory pedestrian system will have to be aware of
several types of infrastructural elements, by either per-
ception or telematics approaches. At least some of the
complexity might be reduced by limiting the scope of
a pedestrian protection system to only cover specific
traffic scenarios; this will represent a good intermedi-
ate solution.

In conclusion, this article has provided an overview
of the state-of-the art in the area of sensor-based pedes-
trian detection. In spite of the very difficult technical
challenges that lie ahead, some degree of optimism is
warranted given the progress that this domain has seen
over the past few years. Considering Tables 1 and 2,
the goal certainly appears worthwhile.



Figure 3: Pedestrian detection results by the Chamfer
System [10] shown in red. In addition to correct detec-
tions, the figure also illustrates typical shortcomings,
such as false detections in heavily textured image ar-
eas (e.g. left image, bottom row) or missing detections
in areas of low contrast and/or occlusion (e.g. right
image, bottom row).
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