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Abstract—Detecting people in images is key for several important application

domains in computer vision. This paper presents an in-depth experimental study

on pedestrian classification; multiple feature-classifier combinations are examined

with respect to their ROC performance and efficiency. We investigate global

versus local and adaptive versus nonadaptive features, as exemplified by PCA

coefficients, Haar wavelets, and local receptive fields (LRFs). In terms of

classifiers, we consider the popular Support Vector Machines (SVMs), feed-

forward neural networks, and k-nearest neighbor classifier. Experiments are

performed on a large data set consisting of 4,000 pedestrian and more than

25,000 nonpedestrian (labeled) images captured in outdoor urban environments.

Statistically meaningful results are obtained by analyzing performance variances

caused by varying training and test sets. Furthermore, we investigate how

classification performance and training sample size are correlated. Sample size is

adjusted by increasing the number of manually labeled training data or by

employing automatic bootstrapping or cascade techniques. Our experiments show

that the novel combination of SVMs with LRF features performs best. A boosted

cascade of Haar wavelets can, however, reach quite competitive results, at a

fraction of computational cost. The data set used in this paper is made public,

establishing a benchmark for this important problem.

Index Terms—Pedestrian classification, feature evaluation, classifier evaluation,

performance analysis.
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1 INTRODUCTION

THE ability to detect people in images is key to a number of
important applications ranging from surveillance, robotics, and
intelligent vehicles to advanced user interfaces [1]. Large variations
in human pose and clothing, as well as varying backgrounds and
environmental conditions, make this problem particularly challen-
ging from a computer vision perspective.

Advances in machine learning theory coupled with improve-

ments in computer technology (processing speed, storage) increas-

ingly favor techniques that do not rely on manually crafted

models, but which, instead, use learning approaches with

corresponding large training sets to distinguish whether an image

region contains an object or not. Many interesting pedestrian

classification approaches have been proposed in the literature; an

overview is given in the next section. However, the amount of

training and test data used in these publications, and their

distribution in terms of capture times and locations, differ

substantially. This prohibits a meaningful quantitative perfor-

mance comparison and offers little insight in the relative merits of

the underlying methodical components.
This paper provides a thorough experimental study of pedes-

trian classification techniques on a large, common data set. The

overall pattern classification problem is considered as consisting of

two parts, feature extraction and actual classification; multiple

combinations thereof, some of which are novel, are examined

empirically. In addition, we study the correlation of classification
performance with training sample size and investigate two
techniques for the automatic generation of new training examples.
By making the data set publicly available for benchmarking
purposes, we aim to advance further research in pedestrian
classification analogous to, e.g., the contribution of the
FERET database [2] toward face recognition.1

The remainder of this paper is organized as follows: After
reviewing existing techniques in Section 2, we first describe our
selection of methods for feature extraction, classification, and the
automatic generation of new training examples in Sections 3, 4,
and 5, respectively. Our benchmark data set is introduced in
Section 6, along with a specification of the performance evaluation
methodology. The results of our experimental study are presented
in Section 7 and we conclude in Section 8.

2 PREVIOUS WORK

Many interesting pedestrian classification approaches have been
proposed in the literature. For example, Wöhler and Anlauf [3]
train a feed-forward neural network with local receptive fields
directly on (size normalized) pedestrian images. Zhao and Thorpe
[4] apply a fully connected feed-forward neural network to high-
pass filtered images. Papageorgiou and Poggio [5] pioneered the
use of overcomplete sets of (Haar) wavelet features in combination
with a Support Vector Machine (SVM). This approach was adapted
by Elzein et al. [6] and others. Instead of shifting all the work to a
single powerful, hence, computationally expensive classifier, Viola
et al. [7] proposed an efficient detector cascade, where simpler
detectors are placed earlier in the cascade and more complex ones
later. An alternate way of reducing the complexity of pedestrian
appearances are component-based approaches. Shashua et al. [8],
for instance, extract a feature vector from each of nine fixed
subregions. Other approaches try to directly identify certain body
parts. Mohan et al. [9], for example, extend the work of [5] to four
component classifiers for detecting heads, legs, and left/right arms
separately. Individual results are combined by a second classifier
after ensuring proper geometrical constraints.

There are some striking differences in the classification
performance reported in the literature. The variation in the
number of false classifications at a particular correct classification
rate can exceed one order of magnitude across multiple sequences
of the same study [7] and can run as high as several orders of
magnitude when considering multiple studies (e.g., [4], [8] versus
[5]). These large performance variations are mainly the result of the
(limited) size of the data sets used and their composition, in
particular, with respect to the negative examples. Data sets which
draw the negative examples randomly from images containing
large uniform image regions (e.g. sky, pavement) typically lead to
much better classification performance than data sets where the
negative examples are generated by some prefiltering method and
contain pedestrian look-alike vertical structures.

3 FEATURE EXTRACTION

Based on the variety of techniques listed in Section 2, this section
provides a description of the feature extraction techniques selected
for experimental evaluation. We distinguish global and local
features and further differentiate between adaptive and nonadap-
tive features among the latter. These categories are exemplified by
PCA coefficients, local receptive fields (LRF), and Haar wavelets
below. Associated parameters are subject to optimization via cross
validation on the training set (see Section 6.2).
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3.1 PCA Coefficients

The probably best known (linear) feature extraction method is
principal component analysis (PCA) [10]. It effectively reduces
dimensionality by identifying the most expressive features, i.e., the
eigenvectors with the largest eigenvalues, while those with small
eigenvalues are assumed to contain noise and are cut off
accordingly. PCA coefficients can be regarded as global features
as each coefficient describes a certain property of the full input
pattern, whereas local details are smoothed out by the
dimensionality reduction (see Fig. 1). The number of principal
components to remain is typically user-defined. We consider
values that capture 80 percent, 90 percent, 95 percent, or 100 per-
cent of the variance during parameter optimization.

3.2 Haar Wavelets

The most popular features for pedestrian classification found in the
literature are Haar wavelets, or extensions thereof, e.g., [5], [7].
Their use is motivated by the fact that they encode local image
features, i.e., intensity differences, at multiple scales, thus allowing
for a balance between compactness and expressivity.

We adopt the overcomplete dictionary of Haar wavelets by
Papageorgiou and Poggio [5], where “overcompleteness” arises
from wavelets of three different orientations (see Fig. 2) shifted by
1
4 the size of the support of each wavelet in both directions. Domain
knowledge about the target class is incorporated by using only two
medium scales of wavelets. Wavelets of the finest scale are
assumed to represent noise and are, hence, discarded, as well as
very coarse scale wavelets which have support as large as the
object itself. Given our input images of size 18� 36, we selected
wavelets of scales 4� 4 and 8� 8, from which we obtained 15� 33
and 6� 15 features, respectively, for each orientation; hence, a total
of 1;755 features. Furthermore, the signs of the coefficients, i.e., of
the intensity differences, are considered irrelevant: only their
magnitude is encoded in the feature vectors.

In addition, we pursue the approach of Viola and Jones [7], who
build a cascade of AdaBoost classifiers based on a much greater
dictionary of features (see Section 5.3).

3.3 Local Receptive Fields

Instead of manually crafting a set of features, multilayer
perceptrons provide an adaptive approach for feature extraction
by means of their hidden layer, so that the features are tuned to the
data during training [10]. Feed-forward neural networks with local
receptive fields (NN/LRF), introduced by Fukushima et al. [11]
and later applied to pedestrian classification by Wöhler and Anlauf
[3], are a particularly attractive approach for classifying 2D images.
In contrast to standard multilayer perceptrons, neurons in the
hidden layer are only connected to a restricted local region of the
input image, referred to as their local receptive fields (see Fig. 3).
The hidden layer is divided into a number of branches, with all

neurons within one branch sharing the same set of weights. Each

branch encodes some local image feature. Local connectivity and

weight-sharing effectively reduce the number of weights to be

determined during the training stage, thus allowing for relatively

small training sets for the (high) dimension involved.
We further investigate the concept of LRFs by extracting the

output of the hidden layer of a (once trained) NN/LRF as features

subject to classification by generic classification methods (other

than neural networks). Preliminary experiments have shown

receptive fields of size 5� 5 to be optimal, shifted at a step size

of 2 pixels over the input image of size 18� 36. The number of

branches is varied within the values of f8; 16; 24; 32g during

parameter optimization.

4 CLASSIFICATION METHODS

We now turn our attention to suitable methods for classification.

We focused our selection on pattern classifiers that directly

construct the decision boundary, rather than density estimation

approaches [10] (e.g., Bayes Decision Theory or Parzen Classifier),

given that the latter seem less suited for modeling the nontarget

class, which is, in a sense, not a real class but comprises the vast

feature space of “everything else.”
The generation of the LRF features inherently involves the

training of a neural network. We consequently apply a feed-forward

neural network to PCA and Haar wavelet features as well. The

architecture chosen here is the simple but most common form of a

(fully connected) three-layer network, where the number of hidden

units is adjusted by cross validation.
Support Vector Machines (SVM) [12] have evolved as a standard

tool for a broad range of classification tasks, including pedestrian

classification [5], [9]. A possible advantage is the direct optimiza-

tion of the margin of the decision boundary, hence, the classifica-

tion error, opposed to the minimization of some artificial error

term such as, e.g., mean squared error for neural networks. The

complexity of the decision boundary is determined by the kernel

function. For our experiments, we compare polynomial and radial

basis function (RBF) kernels. Parameters of the kernel function,

such as order of polynomial or RBF radius, are subject to

optimization via cross validation. Note that the combination of

Haar wavelet features and quadratic SVM closely resembles the

system by Papageorgiou and Poggio [5].
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Fig. 1. An illustrating example of principle components obtained on the training data set introduced in Section 6.1, sorted in descending order of corresponding

eigenvalues (first 10 and last 3).

Fig. 2. Haar wavelets of three different orientations—vertical, horizontal, and

diagonal—as utilized by Papageorgiou and Poggio [5].

Fig. 3. The architecture of a neural network with local receptive fields as employed

by Wöhler and Anlauf [3].



Finally, a k-nearest neighbor classifier (k-NN) serves as a baseline

classifier as it is able to handle arbitrary distributions without

parameter adaptation, except for the number k.

5 METHODS FOR INCREASING THE

TRAINING SAMPLE SIZE

Classification performance, in general, is known to scale with the

training sample size [10]. We quantify this effect empirically in

Section 7.2 with respect to our training sets, feature extraction, and

classification methods. Yet, the acquisition of additional training

examples is often limited by possibility and expense. For the

problem at hand, for instance, pedestrian examples are obtained

from manual labeling. On the other hand, nonpedestrian patterns,

randomly extracted by some preprocessing module from a set of

images not containing any pedestrians, come almost for free. We,

hence, study two techniques known from the literature on how to

iteratively select and utilize additional nontarget examples based

on an initial classifier, denoted as bootstrapping and cascade.

5.1 Bootstrapping

Sung and Poggio [13] employ a bootstrapping strategy to incremen-

tally construct a training set of relevant nontarget examples: False

positives of an existing classifier are collected from a set of

randomly extracted nontarget patterns and added to the training

set. A new classifier is then trained on the so-augmented training

set, replacing the old one. This procedure is repeated until no

further performance gain can be achieved.

5.2 Cascade

Viola et al. [7] employ a cascade strategy for combining multiple

classifiers, where test patterns are successively classified by each

stage of the cascade until the outcome of one stage is “non-

pedestrian.” Consequently, a test pattern is only assigned to the

pedestrian class if all classifiers agree on that decision. The cascade

is constructed iteratively: For each stage of the cascade, a new

training set is generated by collecting false positives of the existing

cascade out of a set of randomly extracted nonpedestrian

examples, plus the original set of pedestrian examples. The

classifier obtained from this new training set is then appended to

the cascade.

5.3 Boosted Cascade of Haar-Like Features

In addition to applying the cascade approach to the feature-

classifier combinations described above, we also evaluate the

cascade system of Viola et al. [7] for comparison. Their system is

based on a rich dictionary of simple appearance filters, similar to

Haar wavelets. For each stage of the cascade, AdaBoost [14]

iteratively constructs a weighted linear combination of simple

classifiers, each made by thresholding one feature value. Iterations

are stopped when a certain user-defined performance target is

reached and the training process continues with the next stage of

the cascade. Our experiments are conducted using the

implementation found in the Intel Open Source Computer Vision

Library [15], with the target performance for each stage set to
50 percent false positive rate at a detection rate of 99.5 percent.

6 BENCHMARK DATA SET

6.1 Data Sets

Fig. 4 shows a few examples of pedestrian and nonpedestrian

samples of the benchmark data set. Pedestrian examples were

obtained from manually labeling (and extracting) the rectangular

positions of pedestrians in video images, in a rather tedious and

time consuming process. Images were recorded at various (day)

times and locations with no particular constraints on pedestrian

pose or clothing, except that pedestrians are standing in an upright

position and are fully visible. In order to make maximum use of

these (valuable) labels, pedestrian images were mirrored and the

bounding boxes were shifted randomly by a few pixels in

horizontal and vertical directions. The latter is to account for small

errors in ROI localization within an application system. Six

pedestrian examples are thus obtained from each label.

As nonpedestrian examples, we extracted patterns representa-

tive of typical preprocessing steps within a pedestrian classifica-

tion application from video images known not to contain any

pedestrians. Examples of such preprocessing are background

subtraction for surveillance applications or stereo-based object

detection for in-vehicle applications. For our case of static,

monocular images, we chose a shape-based pedestrian detector

[16] that matches a given set of pedestrian shape templates to

distance transformed edge images. We included those patterns as

negative samples to our classification training set, where the shape

detector resulted in a match with the associated pixel-averaged

chamfer-2-3 distance [17] to one of the given pedestrian shape

templates below 2.5 (this corresponds to a maximum average per-

pixel deviation of roughly 1.25 pixels) (see the bottom row in

Fig. 4). Given the bounding box locations of interest in video

images, examples were cut out after adding a border of 2 pixels to

preserve contour information and scaled to common size 18� 36,

which was found optimal in preliminary experiments.

We split the resulting data base into five fully disjoint sets, three

for training and two for testing (see Table 1), which allows for a

variation of training and test sets during the experiments.

Examples recorded at the same time and location are kept within

the same set, so that, e.g., a pedestrian captured in a sequence of

images does not show up in multiple data sets. This ensures truly

independent training and test sets, but also implies that examples

within a single data set are not independent—a fact taken into

account in the test procedure below.

6.2 Test Procedure

Classification performance is evaluated by means of ROC curves,

which quantify the trade-off between detection rate (the percen-

tage of positive examples correctly classified) and the false positive

rate (the percentage of negative examples incorrectly classified).
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Fig. 4. Pedestrian and nonpedestrian samples from the benchmark data set (upper versus lower row, respectively).



In order to compare the performance of two classifiers, we need

a confidence interval to decide whether performance differences

are significant or represent noise. Although the variance of test

results obtained from a finite sample size has been well studied in

the literature, this theory fails here because of (unknown)

dependencies amongst the test examples. In fact, much larger

performance variations have been observed in practice than one

would expect from test samples of size of 4,800 and 5,000 (see

Table 1).

Consequently, we decided to empirically determine the

ROC variance by varying training and test sets. While this is

commonly done via cross-validation, we prefer not to interchange

training and test data and to use a partition of the training data for

parameter tuning. Parameters to be specified prior to training and

testing of a classifier have been introduced above for each feature

extraction and classification method. Cross validation over the

three training sets is used to determine optimal settings for these

parameters.

Performance is then analyzed on the test sets as follows: For

each experiment, three different classifiers are generated, each by

selecting two out of the three training sets. Testing all three

classifiers on both test sets yields six different ROC curves, i.e., six

different detection rates for each possible number of false positives.

(ROC points are interpolated where necessary.) When taken as six

independent tests which follow a normal distribution, a confidence

interval of the true mean detection rate is given by the

t distribution as

�y� tð�=2;N�1Þ
s
ffiffiffiffiffi

N
p � �y� 1:05s; ð1Þ

where �y and s denote the estimated mean and standard deviation,

respectively, 1� � ¼ 0:95 is the desired confidence interval, and

N ¼ 6 is the number of tests. Hence, the estimated standard

deviation of the detection rate approximately represents a

95 percent confidence interval. Although this analysis is somewhat

optimistic as it assumes independency of the individual

ROC curves, it still provides a reasonable indicator for perfor-

mance comparison.

7 EXPERIMENTAL RESULTS

This section provides comparative experimental results of the

techniques described in Sections 3, 4, and 5. In the first batch of

experiments, we apply each classification method to each type of

features, whenever appropriate, in order to allow for a separate

investigation into the effectiveness of features and classifiers. The

benefit of increased training sample sizes is then evaluated in the

second batch of experiments, based on the two best feature-

classifier combinations identified so far.

7.1 Combinations of Feature Extraction and
Classification Methods

All experiments in this section are conducted using two (out of

three) training sets for training and the remaining one for

validation. After the parameters have been optimized via cross

validation, an evaluation of the mean and variance of ROC per-

formance is done on the two test sets as described above.

Individual results for each feature type are given in Figs. 5a, 5b,

and 5c. Fig. 5d provides a comparison of the different feature types

by selecting the best performing classifier for each feature. Two

observations can be made: First, global features, represented by

PCA coefficients, are inferior to local features (Haar wavelets,

LRFs). The reason for this may lie in the fact that sometimes very

small details such as hands, feet, or the form of the head make the

difference between pedestrians and other objects. Such details are

smoothed out by PCA dimensionality reduction. Second, adaptive

features (LRFs), which have been tuned to the data during the

training process, outperform nonadaptive ones (Haar wavelets).

Regarding classifiers, SVMs generally perform best. This holds

even for LRF features that have been generated by a neural

network.

7.2 Increasing the Training Sample Size

The two best classification techniques identified above, quadratic

SVM on local receptive fields and quadratic SVM on Haar wavelet

features, are employed for these experiments. We first evaluate the

benefit of manually increasing the training sample size from an

auxiliary data set. The number of training examples is doubled two

times, so that the training sets consist of 3,200 and 6,400 pedestrian

and 20,000 and 40,000 nonpedestrian examples, respectively.

Again, classifier parameters are first optimized via threefold cross

validation and the mean and variance of ROC performance is

evaluated on three different training and test sets. Resulting ROC

curves are given in Fig. 6 for both classifiers.

Interestingly enough, classification errors are reduced by

approximately a factor of two whenever the training sample size

is doubled; no saturation effects are yet observed. Notice,

furthermore, that the performance differences caused by increas-

ing the number of training examples exceed the differences

between different feature extraction methods. The relative perfor-

mance difference between the feature types remains the same, i.e.,

LRFs maintain their superiority.

We now evaluate to what extent the benefit of additional

training examples can be achieved by the automatic extraction of

new nonpedestrian patterns by means of bootstrapping and cascade.

Both techniques are applied iteratively, generating 10,000 new

nonpedestrian examples in each iteration, which equals the

number used for the initial classifier. In all combinations

considered, the maximum performance was reached after the

third iteration. Results are given in Fig. 7. Though both approaches

quickly reached their limits, a consistent performance improve-

ment was achieved. A comparison of both strategies reveals a
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TABLE 1
DaimlerChrysler Pedestrian Benchmark Data Set

“Pedestrian Labels” denotes the number of pedestrians manually labeled, whereas “Pedestrian Examples” denotes the number of pedestrian examples in each data set
derived from the pedestrian labels by mirroring and shifting.



small advantage of the bootstrapping approach. This benefit is,

however, paid for with higher computational costs, as incremen-

tally more complex training sets imply incrementally more com-

plex classifiers.
Results of the AdaBoost cascade system by Viola et al. are given

in Fig. 8. The performance of the initial cascade stages is limited by

the user-defined training termination criterion (set to 50 percent

false positive rate at a detection rate of 99.5 percent). The entire

eight-stage cascade, however, achieves about the same perfor-

mance as the cascaded SVM applied to Haar wavelet features

(Fig. 7b). Although adding more stages to the cascade further

reduces the training set error, performance on the validation and

test sets was observed to run into saturation. The main advantage

of this approach, though, is processing speed. In our implementa-

tion, the cascade of eight AdaBoost classifiers runs, on average, at

0.4 ms per test sample, whereas the four stage SVM cascade

requires a significantly higher 250 ms on average (both imple-

mentations in C/C++ on a 3.2 GHz Pentium IV PC).
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Fig. 5. A comparison of different feature extraction and classification methods. Performance of different classifiers on (a) PCA coefficients, (b) Haar wavelets, and

(c) LRF features. (d) A performance comparison of the best classifiers for each feature type.

Fig. 6. The performance gain by increasing training sample sizes for (a) quadratic SVM on local receptive fields (LRF) and (b) quadratic SVM on Haar wavelet features.



8 CONCLUSION

This paper presented an in-depth experimental study on pedes-

trian classification. Multiple feature-classifier combinations were

examined with respect to their ROC performance and efficiency on

a large data set with ground truth.
Global features, here represented by PCA coefficients, were

found to be inferior to local features. Among the latter, adaptive

features (local receptive fields) outperformed nonadaptive ones
(Haar wavelets). Regarding classification methods, SVMs out-

performed the other classifiers tested, except for the AdaBoost

cascade approach, which achieved comparable performance at
much lower computational costs.

The greatest performance gain was, however, achieved by

increasing the training sample size. Here, the automatic generation
of nonpedestrian examples resulted in a performance gain that,

after few iterations, ran into saturation. Not so for the addition of

target examples at the quantities considered. The obvious con-
sequence is to diligently continue collecting more training (target)

samples, but this is time consuming. Thus, techniques for

extending and designing the training set using interactive learning

techniques seem an especially worthwhile direction of further
research. In terms of classification methods, the combination of the

AdaBoost cascade approach with LRFs could be investigated,

trying to achieve the same good classification performance at lower
computational cost. The best obtained overall performance,

5 percent false positives at 90 percent detection rate for the

“bootstrapped” SVM on LRFs, is still far apart from the

performance needed for most real-world applications. It indicates
that more research is needed to address this complex but
important problem.
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Fig. 7. Comparison of bootstrapping versus cascade strategy for (a) quadratic SVM on LRFs and (b) quadratic SVM on Haar wavelet features.

Fig. 8. Performance of the AdaBoost cascade by Viola et al. [7].


