
CAR-TR-718
CS-TR-3292

DACA76-92-C-0009
June 1994

R-tree Index Optimization

D.M. Gavrila

Computer Vision Laboratory
Center for Automation Research

University of Maryland
College Park, MD 20742-3275

Abstract

The optimization of spatial indexing is an increasingly important issue considering the fact that
spatial databases, in such diverse areas as geographical, CAD/CAM and image applications, are
growing rapidly in size and often contain on the order of millions of items or more. This necessitates
the storage of the index on disk, which has the potential of slowing down the access time signi�cantly.
In this paper, we discuss ways of minimizing the disk access frequency by grouping together data
items which are close to one another in the spatial domain (\packing"). The data structure which
we seek to optimize here is the R-tree for a given set of data objects.

Existing methods of building an R-tree index based on space-�lling curves (Peano, Hilbert) are
computationally cheap, but they do not preserve spatial locality well, in particular when dealing
with higher-dimensional data of non-zero extent. On the other hand, existing methods of pack-
ing based on all dimensions of the data, such as the several proposed dynamic R-tree insertion
algorithms, do not take advantage of the fact that all the data objects are known beforehand.
Furthermore, they are essentially serial in nature.

In this paper, we regard packing as an optimization problem and propose an iterative method
of �nding a close-to-optimal solution to the packing of a given set of spatial objects in D dimen-
sions. The method achieves a high degree of parallelism by constructing the R-tree bottom-up. In
experiments on data of various dimensionalities and distributions, we have found that the proposed
method can signi�cantly improve on the packing performance of the R* insertion algorithm and
the Hilbert curve. It is shown that the improvements increase with the skewness of the data and,
in some cases, can even amount to an order of magnitude in terms of decreased response time.

Keywords: spatial databases, R-tree, optimization

The support of the Advanced Research Projects Agency (ARPA Order No. 8459) and the U.S. Army Topographic
Engineering Center under Contract DACA76-92-C-0009 is gratefully acknowledged.



1 Introduction

There has been a great deal of interest over the years in extending traditional, alpha-numeric

databases to handle multi-dimensional spatial data. Applications of such spatial databases have

traditionally been found in Geographical Information Systems (GIS) and Computer Aided Design

(CAD) packages. In a GIS, for example, that contains maps of all the roads, lakes and rivers of a

country X, there is a need to facilitate queries such as requesting all the roads within Y miles of

city Z. More recently, spatial data structures have been used to aid in the retrieval of images from

large image databases by shape similarity [2, 13]. In order to process these types of queries quickly,

an e�cient indexing mechanism for spatial data objects is required, according to their location in

space.

A recent survey of spatial data structures is given in [16]. Many of the more successful ap-

proaches rely on the principle of hierarchical decomposition of space. The idea is to index progres-

sively smaller regions of space using a B-tree-like data structure, such that search can be focused

at a high level towards the relevant regions. An example of such a data structure is the R-tree

and its variants [1, 6, 18], where the data space is successively decomposed into (hyper) rectangles.

Another example is the Cell-tree [5], where the primitive index region is a polygon. All these data

structures are suited for handling spatial data dynamically. In addition to retrieval, they allow

runtime insertion and deletion of objects in the database.

If some of the current databases are considered to be large, future databases are expected to be

huge. For example, the U.S. Bureau of the Census has been building the TIGER database to store a

detailed map of the country; its size is currently approximately 19 Gb. In the near future, NASA's

Earth Observation System database is expected to include more than 1010 Mb of image data. The

volume of such databases containing millions of data objects necessitates the storage of the index

structure on disk. This has the potential of slowing down the access time considerably. In this

paper, we discuss ways of minimizing the disk access frequency by grouping together data objects

which are spatially close to one another (\packing"). The data structure we seek to optimize is

the R-tree for the case of a given set of data objects. Packing can thus be done to build the �nal

index on a static database, or to periodically recon�gure (part of) the index on a dynamic database

whenever time constraints allow.

Our approach is to view packing as an optimization problem and use an iterative method to �nd

a close-to-optimal solution. The iterative method used is based on the minimization of an objective

1



function, which captures what e�cient packing means. The same type of objective function can be

used to pack data structures whose primitive index region is not a (hyper) rectangle, by de�ning an

appropriate distance metric. We pack each level of the R-tree, and construct the R-tree bottom-up,

rather than starting at the root and inserting data items one by one in a top-down fashion. By

doing so, we obtain an approach which is well suited for parallel implementation.

Unlike previous work on packing methods based on space-�lling curves [10, 15], in our approach

clustering takes place in D-dimensional space. It takes into account both the position and the

spatial extent of the data in all D dimensions. We therefore obtain superior packing performance

which becomes more evident with increasing dimensionality and skewness of the data, as we shall

see. On the other hand, compared to the existing D-dimensional dynamic insertion algorithms of

the R-tree [1, 6, 18], our approach takes advantage of the fact that all the data is known beforehand

in performing the packing.

This paper is organized as follows. Section 2 gives an overview of previous work on the R-tree

and previous approaches to constructing the index tree. In Section 3 we present our approach to

the packing problem; this is followed by a discussion in Section 4. We have performed a number

of experiments on data of di�erent dimensionalities and distributions in order to compare the

performance of our approach with some of the most promising existing methods of constructing the

R-tree, the Hilbert curve and the R* insertion algorithm. We show in simulations that considerable

improvement is possible in terms of decreased response time, if we optimize the packing as proposed.

The experiments are described in Section 5, after which we conclude in Section 6.

2 Indexing on the R-tree

2.1 The R-tree

The R-tree [6] is a height-balanced tree similar to the B-tree. In the R-tree, leaf nodes contain index

records of the form (I, tuple-id) where tuple-id uniquely determines a tuple in the database and I

determines a bounding (hyper) rectangle of the indexed spatial object. The actual data objects can

have arbitrary shapes. Non-leaf nodes contain entries of the form (I, child-pointer) where child-

pointer refers to the address of a lower node in the R-tree and I is the smallest bounding rectangle

that contains the bounding rectangles of all of its children nodes. If (m;M) is the degree of the

R-tree, each node contains between m � M=2 and M entries (the \node �ll requirements"), with

the possible exception of the root. See Fig. 1a for an example of a (1; 3) R-tree. Fig. 1b shows

2



a di�erent (1; 3) R-tree on the same data set. The R-tree is well suited for storage on secondary

memory (i.e. disk). Each node of the R-tree is placed on a separate disk page. This makes the

R-tree particularly useful for applications involving very large data bases where the index is too

large to �t in main memory.

A

B

A

B

C

D

E

C

D

E

2

2

1 1

1 2

A B C D E

1 2

A B C D E

Figure 1: a) and b) Two di�erent R-trees on the same data set

A search in an R-tree starts at the root and descends the tree in a manner similar to a search

in a B-tree. Due to the non-zero size of the query window, and due to possible overlap between

bounding rectangles at each level of the tree, multiple paths from the root downwards may need to

be traversed. The R-tree can be updated dynamically, by insertion or deletion of data objects at the

leaves. We will review the various existing R-tree construction methods in Section 2.3. For further

details on the various search, insertion and deletion algorithms see [1, 6, 18]. See also [17, 19] for

some recent extensions of the R-tree to deal with spatio-temporal data.

2.2 Response Time

Given that there are multiple possible R-tree con�gurations that can index the same database

of objects, one can introduce a notion of e�ciency of a con�guration. In our case, we seek to

minimize the response time, which is the time elapsed from the moment a user enters a query until

the response is completed. We assume that due to memory constraints, at least part of the R-tree

is disk-resident. Since the I/O time dominates the CPU time in determining the response time of a

typical query, we will take only the former into consideration. Given that each node of the R-tree

is stored on a separate page, the response time will then correspond to the number of R-nodes on

disk visited during a query. Here we assume that we have stored the R-tree on a single-disk system.

3



The response time model can be extended to deal with the storage of the index tree on parallel

disk arrays by assuming unit cost for accessing P pages located on P di�erent disks. The discussion

below is then modi�ed accordingly (see also [9]).

Using the single-disk model for the response time of an R-tree con�guration, it is possible to

derive its expected response time E[Tr] for some simple query distributions. For example, let Sj

be the extent of the data space in the jth dimension, let qj be the extent of a window query in that

dimension, and let rij be the extent of the i
th non-leaf (\directory") rectangle of the R-tree on disk

in the jth dimension. For the case of a query distribution with �xed windows of above sizes and

uniformly distributed centers, the expected response time of an R-tree con�guration is determined

by [10, 14]

E[Tr] / (
NX
i=1

DY
j=1

(rij + qj)) =
DY
j=1

Sj (1)

The above expression computes the fraction of the volume indexed in the data space, if every ith

(disk resident) directory rectangle is enlarged by qj in the jth dimension. It is an approximation

for the case qj << Sj , in which case boundary e�ects are negligible. If this is not the case, the

term rij + qj should be restricted by the boundary of the data space [14]. For point queries, the

expected response time is determined by the fraction of volume indexed. As mentioned in [10], the

above formulas are independent of the details of the R-tree creation/insertion/update algorithms

and hold for R-trees, R* trees, R+ trees, etc. They are also independent of the data distribution.

They provide a useful way to compare two R-tree con�gurations without the need to run actual

queries and compare performance. For example, the R-tree con�guration of Fig. 1a is rated more

favorably than the one in Fig. 1b by eq. (1).

In reality the query distribution might well be non-uniform. The query distribution might

depend on the distribution of the stored data, with higher likelihood of access in areas with high

data densities. In that case, one could envisage using a modi�ed version of eq. (1) with weights for

the volumes of the (directory) rectangles depending on the expected access frequency of that region

(see also [14]). The following criteria a�ect the expected response time of a R-tree con�guration in

the 2D case [1]:

1. The areas of the directory rectangles

2. The perimeters of the directory rectangles

3. The overlap between directory rectangles

4. The storage utilization

4



In D dimensions, area is replaced by volume and the perimeter of a (hyper) rectangle can be de�ned

either as the sum of its extents in the di�erent dimensions, or as the sum of the volumes of the sides

of the (hyper) rectangle. Lower-volume directory rectangles are desirable because this means less

\dead" space (space which is indexed but does not contain data). In an R-tree con�guration with

less dead space, queries which do not index data are likely to be discontinued higher in the R-tree,

reducing the number of disk accesses. Minimizing the second and third criteria while maximizing

the fourth criterion is particularly useful for reducing the disk accesses when dealing with window

queries. Note that in some cases the above optimization criteria can be contradictory [1]. An

increase in storage utilization could for example result in an increase of the area indexed. Methods

of constructing R-trees are based on heuristics to achieve these con
icting goals; we discuss them

in the next subsection.

2.3 R-tree construction

Methods of building an R-tree on a given data set can be characterized by the following features:

Insertion Mode

Incremental vs. batch. In the incremental insertion mode, data objects are inserted one by

one in the current tree. The main procedure is to follow a path from the root to one of the

leaves and perform the actual insertion. After each insertion, a valid R-tree exists. The batch

insertion approach takes a given data set and builds the tree bottom-up, starting at the leaf

level and proceeding towards the root. Only at the end does a valid R-tree exist.

Dimensionality

D-dimensional vs. linear. In D-dimensional packing methods the grouping of data and di-

rectory rectangles in the R-tree is done by grouping in D-dimensional space rather than in

one-dimensional (linear) space.

The above characterization is useful for two reasons. First, it allows the comparison of existing

methods of constructing R-trees, and second, it suggests a novel approach to the problem, as we

will show shortly. We start with the �rst issue and give an overview of the existing methods of

building an R-tree on a given data set.

The existing dynamical insertion algorithms, the linear/quadratic R tree [6], the R+ tree [18]

and the R* tree [1], can be characterized as incremental and D-dimensional. The insertion process is

5



similar to that of a dynamical B-tree. The data items are inserted one by one in the tree by starting

at the root and following a path down to a leaf node at which point insertion is attempted. The

path is determined by choosing for each node in the path the child node which would require the

least volume enlargement to accommodate the new item (or some other D-dimensional criterion). If

insertion is attempted at a leaf node which is not full, the new data item is added and the insertion

is completed. If the leaf node is full, then some action needs to be taken to maintain the node �ll

requirements of the R-tree nodes. This can be handled by a node split in which the contents of

the over�lled leaf node and the new data item are distributed over two new nodes. A node split

can propagate upwards and result in the root being split, at which point the R-tree increases in

level. The method used to deal with a node-split is one of the main distinguishing factors between

the dynamical variants of the R-tree; see [1, 6, 18] for the details. The R* insertion algorithm [1]

provides an additional mechanism to deal with an over�lled node. This involves deleting some of

the entries and re-inserting them into the R-tree. The problem with a dynamic index structure like

the R-tree is that the early-inserted data rectangles (most likely) will have introduced directory

rectangles which no longer e�ciently represent the current data, in terms of measures like eq. (1).

Node splits are merely local reorganizations of the R-tree and thus not likely to be of su�cient help

to deal with this problem. Re-insertion of data items gives the R-tree a basic global reorganization

capability [1].

Other existing methods [10, 15] of building an R-tree can be characterized as batch-oriented

and linear. They are linear since they are based on the clustering properties of space-�lling curves.

Space-�lling curves [8] are mappings from D to 1 dimensions with the desirable property that,

in general, they map points which are close together in D-dimensional space into points that also

close together in one-dimensional space. In other words, they tend to preserve spatial locality under

dimensionality reduction. See Fig. 2 for some of the more popular space �lling curves from 2D to

1D. The same curves can be generalized to map from higher dimensions to 1D. The methods are

batch oriented since they build the R-tree bottom up, level by level. At each level a space-�lling

curve is used to sort the rectangles using their centers or corners. The sorted list is then looped

through and successive rectangles are assigned to the same R-tree node until a certain fraction of

the node is �lled (usually 100%, full packing). Then the next R-tree node of a level is �lled using

the bounding rectangles of the previous level.

It should be mentioned that packing methods based on the Dimension Sort curve (Fig. 2),

as proposed by [15], do not seem to be very desirable. They perform rather poorly in practice

6



N-order Peano Curve Hilbert  CurveDimension Sort  Curve

Figure 2: Space Filling Curves

because only one side of the rectangles determines the grouping. If the data are skewed they can

cover considerable dead space, a problem which deteriorates for non-point data. Furthermore,

they produce long thin bounding rectangles along one dimension. A range query is thus likely

to intersect many of these directory rectangles, resulting in an excess of disc accesses [10]. An

improvement is described in [10], where a space �lling Hilbert curve is used to sort the rectangles

according to the Hilbert-coordinates of their centers. It was reported in earlier work [4, 8] that

the Hilbert curve compares favorably to the Gray-code and Peano space-�lling curve regarding

clustering performance.

Recently, it has been proposed to use the Hilbert curve in the dynamical insertion algorithm

for the R-tree [11]. The algorithm becomes similar to inserting in a B-tree. This approach can be

characterized as incremental and linear.

Table 1: Characterization of R-tree construction methods

incremental methods batch-oriented methods

D-dimensional Quadratic/linear R [6], Iterative optimized
Methods R+ [18], R* [1] R-tree

Linear Methods Hilbert R-tree R-tree by space-�lling curves
[11] [10, 15]

Parallel R-tree
[7]

R-tree construction methods are compared in Table 1. The main use of incremental methods

for the R-tree is to handle dynamical data. If we have a known data set to be indexed, batch

7



methods are preferable for two reasons. First, the incremental methods are dependent on the order

in which the data objects are inserted. As mentioned earlier, previously inserted data objects are

likely to lead to R-tree directory rectangles which are inadequate to represent the whole data set.

In contrast, batch methods can take advantage of the fact that we know the entire data set in

advance. The second reason to prefer batch methods is that they lead to massive parallelism. In

a bottom-up approach di�erent processors can be assigned to di�erent portions of the data space

to group the data objects located there. See for example [7] for a parallel algorithm to build an

R-tree bottom up, based on linear sorting of rectangles across several axes. On the other hand,

incremental methods are serial in nature, inserting data objects one by one.

Linear packing methods have the advantage that they are fast. However, they have the drawback

that they try to map D-dimensional rectangles onto 1-D (i.e. a mapping from 2D parameters to

one parameter), not taking into account the positions and the spatial extents of the rectangles

in all dimensions. The discarding of parameters negatively a�ects the linear packing methods for

two-dimensional data. Their performance decreases with increasing dimensionality of the data,

when compared to D-dimensional packing methods. This will be illustrated in the experiments.

The above considerations lead us to propose a D-dimensional and batch-oriented packing

method for the R-tree (see Table 1). The motivation is that in many applications of interest,

such as image databases [2, 13], the data is multi-dimensional and fairly static. For example, [13]

uses 26-dimensional feature vectors to encode various shape, texture and color properties of image

objects for indexing purposes. We are willing to employ a more computationally intensive technique

to obtain an e�cient R-tree index for such databases, because the cost is incurred only once (or

few times for near-static databases) and is o�set by the repeated gain in the indexing performance

on-line.

3 Proposed Approach

We describe here a packing method for the R-tree which is D-dimensional and batch-oriented.

We build the R-tree bottom up, starting from the leaf level and proceeding towards the root,

while applying the algorithm on each level. The method basically performs a K-way clustering

of D-dimensional rectangles with constraints on constituent cluster sizes (i.e. the R tree node-�ll

requirements). For a parallel disk system, after the R-tree is built, sibling nodes can be assigned to

di�erent disk units to optimize the response time (see also [9]). The input to our packing algorithm

8



at level i of the R-tree is:

- a set of N \data" rectangles r1; : : : ; rN , the bounding rectangles of the rectangles of level

i+ 1, or of the data objects if i is the leaf level

- the min node size m, the max node size M

- the number of sets K, the size of the partition

The output of our packing algorithm at level i of the R-tree is:

- a set of K \bounding" rectangles R1; : : : ; RK, each rectangle spatially containing between m

and M of the rectangles r1; : : : ; rN

M is a parameter which is determined by the page size, by dividing the page size in bytes by the

size of one rectangle record in bytes. K is determined by the average �ll fraction f of the R-tree

nodes we want to achieve at level i. Given

m

M
� f � 1 (2)

we have

K =

�
N

fM

�
(3)

The K-way clustering of the data rectangles is achieved by iterative optimization. Starting with

an initial partition, data rectangles are moved back and forth between neighboring sets while

minimizing a certain objective function E. The objective function E incorporates a measure of

what e�cient packing means. It can be tailored to speci�c data and query distributions, along the

lines discussed in Section 2.2. The optimization criterion we choose to minimize in this paper is

the sum of the volumes of the directory rectangles (eq. (1)). This leads to e�cient R-trees for all

practical purposes. The objective function we use is

E =
KX
k=1

(D(Rk; Rk) +
10

B@ jSkj+ 1

2

1
CA

X
rirj2Sk;i�j

D(ri; rj) + penalty(Sk)) (4)

where D(p; q) is a distance measure between two rectangles de�ned here as the volume of their

bounding rectangle. The �rst term of the objective function is the optimization criterion. The

second term depends on the spread of the data rectangles within a set. It denotes the average

distance between two (not necessarily distinct) rectangles within a set. Sets in which the data

9



rectangles are clustered are deemed more favorable (lower E-value) than sets in which the data

rectangles are further apart. We have added the second term to provide more guidance during the

search process. It has been observed to be quite essential for achieving convergence of the algorithm

to a good solution. Omitting it would, for example, result in data rectangles being shifted back

and forth aimlessly between fully enclosing sets. Finally, the last term represents a penalty term,

which encodes the constraints of the problem into the algorithm. In our case, the penalty term

enforces the node �ll requirements of the R-tree:

penalty(Si) =

8>>>><
>>>>:

w � (m� jSij)
v if jSij < m

0 if m � jSij �M

w � (jSij �M)v if jSij > M

where v and w are parameters to be set. We have given these parameters high values in our

experiments, so in practice there will be no moves into an \illegal" state of the system (i.e. a state

where one or more R-tree nodes would violate the node �ll requirements). There might be some

merit in giving these parameters low values initially and gradually increasing their importance in

order to allow the system to converge faster.

Note that eq. (4) takes into account both the locations and spatial extents of the data rectangles

along the axes. It can also be used for index trees other than the R-tree. For example, for the

Cell-Tree, D(p; q) can be rede�ned to be a measure of distance between polygons. A serial version

of the proposed algorithm can be formulated as follows:

t = 0;

STATE0 = assign the N rectangles to K sets according to some measure;

E = E(STATE0);

while (continue(t)) do f

(Si; rk; Sj) = generate-move(STATEt);

�E = compute-delta-E (Si; rk; Sj)

if accept (�E) f

STATEt+1 = state after moving rk

from Si to Sj in STATEt

E = E + �E g

t = t+ 1

g

10



where continue, generate-move, compute-delta-E, accept are functions that need to be de-

�ned. The above description formulates the packing problem as a search through the space of

possible partitions. The function generate-move comes up with possible moves in the current

state. It would be a bad strategy to consider all possible moves from the current state; their num-

ber is N �K and the vast majority are not likely to decrease the objective function. Instead, the

function generate-move selects only moves between a pair of neighboring sets, the latter de�ned

by heuristics. Once such a set pair is chosen, only a candidate rectangle remains to be speci�ed for

a candidate move. A possible implementation of generate-move is described in Section 5.

The function compute-delta-E computes the increase of the objective function (eq. (4)) for a

candidate move (Si; rk; Sj). This is a potential O(M2) computation, given the second term in eq.

(4). By storing

DSk =
X

rirj2Sk;i�j

D(ri; rj) (5)

for each set Sk, the computation of compute-delta-E is linear in M . The reason to distinguish

between generate-move and compute-delta-E is that the former could use less expensive com-

putations to suggest candidate moves on which compute-delta-E would be invoked.

accept is a boolean function which accepts or discards the generated moves. If the only moves

which are accepted are those which lower the objective function we have a \hill-climbing" type

of search algorithm (although the term \valley-descending" would be more appropriate here to

describe the minimization process). A more general approach can be based on simulated annealing

[12], where the acceptance of moves is stochastic in order to escape local minima of the objective

function. For our experiments, we chose the hill-climbing variant because of speed considerations.

As for choosing the initial state of the iterative process, note that it would be ine�cient to start

with a random assignment of rectangles to sets. A fair initial state can be provided quickly by a

space-�lling curve. After the rectangles are sorted on a linear scale, they can be partitioned into

K equal groups; this represents the initial state.

Finally, we need to specify the stopping condition continue. Reasonable conditions are reaching

a maximal iteration number, or insu�cient progress in terms of decrease in the objective function

between successive checkpoints.

11



4 Discussion

In this section we would like to discuss two issues regarding the algorithm proposed in the previous

section: scalability and parallelism. To start with the former, note that the move generation is the

sole part of the algorithm which is sensitive to the size of the data set. This is because there we

have to compute pairs of sets which are \neighbors" in order to ensure that the candidate moves

which are generated have a good chance of succeeding. Given a de�nition of neighboring sets such

as the one used in the next section, one can assume that the average number of neighbors of a set

remains constant (or increases at most sub-linearly) with increasing size of the data set, given a

reasonable initial packing. Thus the problem is to �nd these pairs, whose number is linear (or at

most sub-quadratic) in N , e�ciently. An exhaustive approach involves O(K2) operations, a �gure

which becomes prohibitive for large values of N (for example N > 106, M = 50, and f = 0:75,

gives K > 2:6� 104). There are two possible approaches to dealing with this problem.

The �rst approach is to bypass the scalability issue altogether by partitioning a large data set

into groups of such size that even an exhaustive approach can be used to �nd neighboring sets.

The optimization algorithm is then run on each sub-group separately. The initial partitioning can

be done using a space-�lling curve or some other simple clustering method. It can be argued that

such a divide-and-conquer approach will produce a packing that is not much worse (in terms of

measures like eq. (1)) than the one resulting from running the optimization on the entire data set.

This is because if the subgroups are of substantial size (say S > 105) and clustered, the \border"

e�ects due to the partitioning of the data set (i.e. a rectangle is assigned to a di�erent sub-group

than its neighboring rectangles) will be small and not a�ect the overall packing performance in a

signi�cant way.

The second approach is to �nd pairs of neighboring sets in sub-quadratic time. There is no

requirement here to �nd all neighbors of a certain set; just a few su�ce to enable generate-move

to generate reasonable candidate moves. One way of doing this is to represent the sets by the centers

of the corresponding bounding rectangle and to use space-�lling curves to sort these linearly. The

neighbors of a set can then be searched in a �xed range on this linear scale. Other ways of restricting

the search for neighboring sets based on simple bucketing methods can be used as well.

Note on the second issue that the above algorithm contains a high degree of parallelism. The

load of computing the N mappings of the space-�lling curve for the initial state can be distributed

evenly over P available processors. For the iterative phase, each processor can pick a neighboring

12



set pair and consider moves between them. The only restriction is that the set pairs are disjoint,

i.e. if processor pk picks set pair (Si; Sj), no other processor can consider moves involving Si or Sj .

For the case P � K=2 this will approach linear speed-up, at least in theory.

5 Implementation and Experiments

We have performed various experiments to compare the performance of the Dimension Sort curve,

the Hilbert curve, the R* algorithm and packing by iterative optimization, in building an e�cient

R-tree. Unlike previous papers, we have included experiments with higher dimensional data to

assess the e�ects of dimension on the di�erent methods. We used simulated data in order to obtain

a variety of distributions with predictable properties. In every experiment we took a data �le,

built an R-tree using one of the methods and ran queries against it, measuring the number of disk

accesses it required. We brie
y discuss the parameters we chose for the di�erent methods. In order

to provide a fair comparison between the di�erent methods, we ran the R* algorithm �rst and

measured the number of nodes K at a level of the resulting tree, and used the same K for the

batch-oriented methods in order to compare them at equal storage utilization.

We chose for the R* algorithm the parameters which gave the best overall performance according

to [1]: m=M = 0:4, and fraction of entries reinserted at node over
ow p = 0:3. In particular, for all

packing methods we set m = 20 and M = 50. These parameters roughly correspond to page sizes

in the range of 1K{8K, depending on the dimensionality of the data used in the experiments (2{10).

The actual page sizes did not a�ect the relative performance of the di�erent packing methods so

we chose to �x the node �ll requirements instead.

The multi-dimensional Hilbert curve was implemented using the algorithm described in [3]. The

Hilbert curve was based on a discretization of space of size 128 along each dimension, i.e. the �rst

power of 2 larger than the actual extent of the data space along each dimension, which was 100.

For the iterative optimization method, the initial state was computed by the Hilbert curve.

During an iteration generate-move periodically computes a set of candidate moves in the current

state and selects from that set at subsequent iterations until it has used up all moves, at which

point it recomputes the set. This approach can be characterized as lazy, i.e. it tries to exert little

e�ort in choosing good moves as long as accept has an accept ratio above a certain threshold. The

following heuristics were used. At the beginning of the iteration process generate-move considers

only moving rectangle rk from Si to Sj if condition 1 (see below) is met. If the accept ratio falls

13



under 5% generate-move considers the more computationally expensive condition 2 to generate

moves. In both cases, the �rst sub-condition represents the de�nition of neighboring sets. Only for

sets which met this condition was the second sub-condition tested.

condition 1:

- The bounding rectangles of Si and Sj intersect,

- Rectangle rk of Si intersects the bounding rectangle of Sj .

condition 2:

- The bounding rectangles of Si and Sj are \close" in the following sense. Let dV1 < 0 be

the volume decrease of the bounding rectangle of Si resulting from shrinking its length along

each dimension by factor s = 0:2. Let dV2 be the minimum volume increase of the bounding

rectangle of Sj required to intersect the bounding rectangle of Si. The bounding rectangles

of Si and Sj are \close" if dV = dV1 + dV2 � 0.

- Moving rectangle rk of Si to Sj results in a decrease of the objective function (4)

The neighboring sets were computed using an exhaustive search; a maximum of ten neighboring sets

were considered for each set. The iteration process was stopped when the optimization criterion

(volume indexed) decreased by less than 2% between successive computations of the candidate

move set by generate-move.

The data �les each contained 50000 rectangles, with extents uniformly distributed in the range

1{5. The following data and query distributions were used:

(D1) \Uniform" The centers of the data rectangles follow a D-dimensional independent uniform

distribution.

(D2) \Cluster" The centers of the data rectangles are grouped in 500 clusters of 100 objects each.

Each cluster has an extent of 20 in each dimension with the cluster centers uniformly and

independently distributed. The data rectangles are uniformly and independently distributed

in each cluster.

(D3) \Mixed" 75% of the data rectangles are distributed \cluster" and 25% are distributed

\uniform".

(Q1) \Uniform Fixed Window" The centers of the query rectangles follow a D-dimensional

independent uniform distribution. The extent of the query rectangles is 20 in each dimension.

14



(Q2) \Data Centered Fixed Window" The centers of the query rectangles are set equal to

those of the data rectangles. The extent of the query rectangles is 20 in each dimension.

Given the size of the data set and of the R-tree nodes, the index tree has three layers. In our

experiments, we assume that the �rst two levels are in main memory. For each data �le and

packing method we also included the fraction of the volume indexed by the various methods under

\uniform point queries". The results are given in the Appendix. The following observations can be

made based on these �gures:

- The Dimension Sort curve gives by far the worst performance in all cases. It results in between

15% and an order of magnitude more disk accesses than the Hilbert curve, with increasing

data dimensionality and skewness.

- The R* algorithm and the Hilbert curve have similar performance on the data set. They

di�er by less than 40% in disk accesses. The R* algorithm is slightly better at the \uniform"

distribution, while the Hilbert curve has an advantage at the \cluster" distribution. Given the

lower computational cost of packing with the Hilbert curve and the potential for parallelism,

it should be considered as the preferable method of obtaining a fast and reasonable packing

of the R-tree for a very large, low-dimensional data set of small extent.

- Packing by iterative optimization can considerably improve on the Hilbert curve performance

(and thus also on the R* algorithm). As would be expected, improvement increases with

increase in data dimensionality and skewness. For the \uniform" data distribution improve-

ments are up to 37% compared to the Hilbert curve. But for the \cluster" distribution,

improvements can be as high as two orders of magnitude; see Table 8 for D = 10. The

reason that the Hilbert curve and R* algorithm perform so poorly in this case is that they

assign rectangles from di�erent clusters to the same R-tree node. Since in the D = 10 case

the inter-cluster distance is very large compared to the intra-cluster distance, this results in

very large directory rectangles indexing mostly empty space. Optimization by the objective

function of eq. (4) can improve on this, because the second term of eq. (4) will result in the

transfer of the few rectangles which are not part of the same cluster in the initial partitioning

by the Hilbert curve. The e�ects of indexing empty space are less serious when the queries are

data-centered, although even in that case improvement up to a factor of four is shown possible

(Table 10). For the \mixed" data distribution, the improvements lie between the �gures for

15



the \uniform" and \cluster" data distribution and are up to a factor of three compared with

the Hilbert curve and the R* insertion algorithm. There is no reason to believe that the above

mentioned improvement gains will deteriorate sharply under a few update operations once

the initial R-tree index has been built. The conditions under which the optimized R-tree was

built were the same as the ones for the R* tree (same average space utilization). A better

initial packing is likely to be bene�cial to the performance of various dynamical insertion and

deletion algorithms.

We ran our simulations on a SPARC 10 workstation. The CPU time involved in the various

methods is as follows. Depending on the data dimensionality, it took about 1{5 minutes of CPU

time to construct the leaf level of the R-tree with the Hilbert curve for the 50000 data objects.

The current implementation of the proposed iterative method required from 15 minutes to 3 hours

of CPU time, depending on the improvement achieved during an iteration (10% { 10000%). The

stopping conditions used were also important factors; for example, a run resulting in 10000%

improvement in three hours would reach 1000% improvement in less than 30 minutes. Some speed-

up could be achieved by optimizing the move generation part of the algorithm, but the most gain

is likely to come from parallel implementation. Finally, the R* algorithm required about 3{25

minutes of CPU time for the di�erent dimensions of the data to build the index tree.

6 Conclusions

In this paper we have considered the problem of constructing an e�cient R-tree index on a given

set of spatial data objects. The main idea has been to group together the rectangles in the R-

tree which are close to each other in the spatial domain. For range queries, this will minimize

the disk access frequency and the resulting response time of indexing. Methods of constructing

an R-tree have been characterized by the method of insertion (incremental vs. batch oriented)

and by the dimensionality of the space in which they perform the grouping (D-dimensional vs.

linear). We proposed a new class of R-tree construction methods which are batch oriented and

D-dimensional based on the iterative minimization of an objective function, which captures the

goodness of groupings of spatial objects. Although this leads to a more computationally intensive

approach, the cost is o�-line and is incurred only once for static data bases or a few times for

near-static databases. Thus the cost can be o�set by the repeated gain in indexing performance

on-line. We have run experiments comparing the performances of the Dimension Sort curve, the

16



Hilbert curve and the R* insertion algorithm with the proposed method, and it has been shown

that improvements can be as high as an order of magnitude on relatively low-dimensional (2{10)

skewed data.

Acknowledgements

The author thanks C. Faloutsos for useful feedback in discussions on this topic. Furthermore, the

author is grateful to L.S. Davis for his continued support.

References

[1] N. Beckman and H.P. Kriegel: \The R* tree: An e�cient and robust access method for points

and rectangles", Proc. ACM SIGMOD, pp. 322{331, 1990.

[2] E. Binaghi et al.: \Indexing and fuzzy logic-based retrieval of color images", Visual Database

Systems II, E. Knuth and L.M. Wegner (eds.), North-Holland, Amsterdam, 1992.

[3] A.R. Butz: \Alternative algorithm for Hilbert's space-�lling curve", IEEE Transactions on

Computers, C-20, pp. 424{426, 1971.

[4] C. Faloutsos and S. Roseman: \Fractals for secondary key retrieval", Proc. ACM PODS,

pp. 247{252, 1989.

[5] O. Gunther: \The cell tree: An index for geometric data", Memorandum UCB/ERL, M86/89,

University of California, Berkeley, 1986.

[6] A. Guttman: \R-trees: A dynamic index structure for spatial searching", Proc. ACM SIG-

MOD, pp. 47{57, 1984.

[7] E.G. Hoel and H. Samet: \Data-parallel R-tree algorithms", Proc. 23rd Int'l. Conf. on Parallel

Processing, pp. 49{53, 1993.

[8] H.V. Jagadish: \Linear clustering of objects with multiple attributes" Proc. ACM SIGMOD,

1990.

[9] I. Kamel and C. Faloutsos: \Parallel R-trees", CS-TR-2820, University of Maryland, College

Park, 1992.

17



[10] I. Kamel and C. Faloutsos: \On packing R-trees", Proc. 2nd Int'l. Conf. on Information and

Knowledge Management, pp. 490{499, 1993.

[11] I. Kamel and C. Faloutsos: \Hilbert R-tree: An improved R-tree using fractals", Proc. VLDB

Conf., 1994.

[12] S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi: \Optimization by Simulated Annealing",

Science, vol. 220, pp. 671{680, 1993.

[13] W. Niblack et al.: \The QBIC Project: Querying images by content using color, texture and

shape, " SPIE Int'l. Symp. on Electronic Imaging Science and Technology, Conf. 1908, Storage

and Retrieval for Image and Video Databases, 1993.

[14] B.U. Pagel et al.: \Towards an analysis of range query performance in spatial data structures",

Proc. ACM PODS, pp. 214{221, 1993.

[15] N. Roussopoulos and D. Leifker: \Direct spatial search on pictorial databases using packed

R-trees", Proc. ACM SIGMOD, 1985.

[16] H. Samet: \The design and analysis of spatial data structures", Addison-Wesley, Reading,

MA, 1990.

[17] R. Schneider and H.P. Kriegel: \Indexing the spatiotemporal monitoring of a polygonal ob-

ject", Proc. 5th Int'l. Symp. on Spatial Data Handling, 1992.

[18] T.Sellis, N. Roussopoulos and C. Faloutsos: \The R+ tree: A dynamic index for multi-

dimensional objects", Proc. 13th VLDB Conf., 1987.

[19] X. Xu et al.: \RT-tree: an improved R-tree index structure for spatio-temporal databases",

Proc. 4th Int'l. Symp. on Spatial Data Handling, 1990.

18



Appendix: Tables

Table 2: Avg. disk accesses per query: uniform data, uniform point queries
D2 D4 D6 D8 D10

dimsort 12.7 12.0 11.4 10.7 9.89

hilbert 6.83 2.51 2.49 2.63 1.98

rstar 6.04 2.40 1.99 1.61 1.22

iteropt 6.47 1.81 1.72 1.65 1.42

Table 3: Avg. disk accesses per query: uniform data, uniform window query

D2 D4 D6 D8 D10

dimsort 123 121 121 118 120

hilbert 98.4 29.4 21.2 19.3 15.3

rstar 94.8 29.6 19.9 15.4 12.1

iteropt 97.0 25.2 17.4 14.7 12.4

Table 4: Avg. disk accesses per query: uniform data, data centered window query

D2 D4 D6 D8 D10

dimsort 124 121 121 112 121

hilbert 98.9 29.6 21.6 19.2 15.0

rstar 95.2 29.6 19.8 15.4 12.1

iteropt 97.6 21.2 17.7 14.7 12.2

Table 5: Avg. disk accesses per query: mixed data, uniform point queries

D2 D4 D6 D8 D10

dimsort 11.6 9.95 8.33 7.04 6.39

hilbert 5.92 2.43 2.40 1.89 1.28

rstar 4.94 1.91 1.61 1.32 1.06

iteropt 5.47 1.68 1.21 0.667 0.406

19



Table 6: Avg. disk accesses per query: mixed data, uniform window query

D2 D4 D6 D8 D10

dimsort 125 121 115 112 109

hilbert 102 30.2 19.3 14.8 11.1

rstar 97.6 28.6 19.4 15.6 14.0

iteropt 100 25.4 14.1 9.52 7.08

Table 7: Avg. disk accesses per query: mixed data, data centered window query

D2 D4 D6 D8 D10

dimsort 146 145 140 139 140

hilbert 121 42.0 28.8 24.4 19.8

rstar 116 41.6 30.8 26.0 25.6

iteropt 119 30.0 21.8 16.8 14.4

Table 8: Avg. disk accesses per query: clustered data, uniform point queries

D2 D4 D6 D8 D10

dimsort 9.09 6.06 3.89 2.83 2.04

hilbert 4.97 1.92 0.881 0.367 0.157

rstar 4.25 1.49 0.649 0.337 0.161

iteropt 4.62 1.11 0.103 0.00661 0.00152

Table 9: Avg. disk accesses per query: clustered data, uniform window query

D2 D4 D6 D8 D10

dimsort 121 110 101 95.0 90.8

hilbert 101 28.8 14.6 8.12 5.32

rstar 98.2 28.0 14.7 9.66 6.76

iteropt 100 23.2 5.52 1.03 0.312

Table 10: Avg. disk accesses per query: clustered data, data centered window query

D2 D4 D6 D8 D10

dimsort 155 148 144 140 144

hilbert 133 45.8 28.2 20.8 18.3

rstar 130 46.0 30.4 26.6 23.6

iteropt 131 37.8 14.0 6.02 4.40

20


