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A Multilevel Mixture-of-Experts Framework for
Pedestrian Classification

Markus Enzweiler and Dariu M. Gavrila

Abstract—Notwithstanding many years of progress, pedestrian
recognition is still a difficult but important problem. We present
a novel multilevel Mixture-of-Experts approach to combine in-
formation from multiple features and cues with the objective of
improved pedestrian classification. On pose-level, shape cues based
on Chamfer shape matching provide sample-dependent priors
for a certain pedestrian view. On modality-level, we represent
each data sample in terms of image intensity, (dense) depth, and
(dense) flow. On feature-level, we consider histograms of oriented
gradients (HOG) and local binary patterns (LBP). Multilayer
perceptrons (MLP) and linear support vector machines (linSVM)
are used as expert classifiers.

Experiments are performed on a unique real-world multi-
modality dataset captured from a moving vehicle in urban traffic.
This dataset has been made public for research purposes. Our
results show a significant performance boost of up to a factor of
42 in reduction of false positives at constant detection rates of our
approach compared to a baseline intensity-only HOG/linSVM
approach.

Index Terms—Mixture-of-experts, object detection, pedestrian
classification.

I. INTRODUCTION

P EDESTRIAN recognition is a key problem for a number
of application domains, such as intelligent vehicles,

surveillance, and robotics. Notwithstanding years of method-
ical and technical progress, e.g., see [10], [16], and [20], it
is still a difficult task from a machine-vision point of view.
There is a wide range of pedestrian appearance arising from
changing articulated pose, clothing, lighting, and—in the case
of a moving camera in a dynamic environment—ever-changing
backgrounds. Explicit models to solve the problem are not
readily available, so most research has focused on implicit
learning-based representations [25].

Many interesting pedestrian classification approaches have
been proposed; an overview is given in Section II. Most ap-
proaches follow a two-step approach involving feature extrac-
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tion and pattern classification. In recent years, a multitude of
(more or less) different feature sets has been used to discriminate
pedestrians from nonpedestrian images. Most of those features
operate on intensity contrasts in spatially restricted local parts of
an image. As such, they resemble neural structures which exist
in lower level processing stages of the human visual cortex [21].
In human perception, however, depth and motion are important
additional cues to support object recognition. In particular, the
motion flowfield and surface depth maps seem to be tightly inte-
grated with spatial cues, such as shape, contrasts, or color [27].

With a few exceptions (see Section II), most spatial features
used in machine vision for object classification are based on in-
tensity cues only. If used at all, depth and motion cues merely
provide information about scene geometry or serve as a selec-
tion mechanism for regions of interest in a segmentation rather
than a classification context [12], [13], [19], [37].

In this paper, we propose to enrich intensity-based feature
spaces for pedestrian classification with features operating on
dense stereo (depth) and dense optical flow (motion). We show
how to combine multifeature/multicue classifiers in a princi-
pled manner, using a classifier-independent Mixture-of-Experts
framework which does neither suffer from the curse of dimen-
sionality nor impractical training times, given our large high-di-
mensional dataset.

II. PREVIOUS WORK

Pedestrian classification has attracted a significant amount of
interest from the research community over the past years. See
[10], [16], [20], and [23] for recent surveys and performance
studies. In this work, we focus on 2-D approaches which are
suitable for medium resolution pedestrian data (i.e., pedestrian
height between 30 and 80 pixels). We do not consider more de-
tailed perception tasks such as human pose recovery or activity
recognition, e.g., [17], [34].

A pedestrian classifier is typically part of an integrated system
involving a preprocessing step to select initial object hypotheses
and a postprocessing step to integrate classification results over
time (tracking); see [10] and [20]. The classifier itself is the most
important module. Its performance accounts for the better part
of the overall system performance and the majority of compu-
tational resources is spent here.

Most approaches for pedestrian classification follow a dis-
criminative scheme by learning discriminative functions (de-
cision boundaries) to separate object classes within a feature
space. Prominent features can be roughly categorized into tex-
ture-based and gradient-based.

Nonadaptive texture-based Haar wavelet features have been
popularized by [41] and used by many others [35], [50], [56].
Recently, local binary pattern (LBP) features [39] have also been
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employed in pedestrian classification [53]. The particular struc-
ture of local texture features has been optimized in terms of local
receptive field (LRF) features [11], [19], [40], [55], which adapt
to the underlying data during training. Other texture-based fea-
tures are codebook patches, extracted around interest points in
the image [1], [28], [45] and linked via geometric relations.

Gradient-based features have focused on discontinuities in
image brightness. Normalized local histograms of oriented gra-
dients have found wide use in both sparse (SIFT) [30] and dense
representations [histograms of oriented gradients (HOG)] [4],
[9], [11], [32], [40], [51]–[53], [56], [59], [60]. Spatial variation
and correlation of gradients have been encoded using covari-
ance descriptors enhancing robustness towards brightness vari-
ations [48]. However, others have proposed local shape filters
exploiting characteristic patterns in the spatial configuration of
salient edges [33], [57].

Some of the presented spatial filters have been extended to the
spatio-temporal domain by means of intensity differences over
time [50], [55] or optical flow [5].

Regarding pattern classifiers, support vector machines
(SVMs) have become very popular in the domain of pedestrian
classification, in both linear [4], [5], [9], [11], [36], [51], [52],
[56], [59], [60] and nonlinear variants [32], [35], [41]. However,
performance boosts resulting from the nonlinear model are
paid for with a significant increase in computational costs and
memory. Recent work presented efficient versions of nonlinear
SVMs for a specific class of kernels [32]. Other popular clas-
sifiers include neural networks [11], [19], [25], [36], [55] and
boosted classifiers [33], [48], [50]–[52], [56], [57], [59], [60].

In the past years, many novel feature and classifier combi-
nations were proposed to improve classification performance,
along with corresponding experimental studies and bench-
marks, e.g., [7], [10], [23], [36]. Orthogonal to such lower level
performance boosts are improvements coming from higher
level methods based on the fusion of multiple classifiers.

Several approaches have attempted to break down the com-
plexity of the problem into subparts. One way is to represent
each sample as an ensemble of components which are usually
related to body parts. After detecting the individual body parts,
detection results are fused using statistical models [15], [33],
[57], learning or voting schemes [6], [9], [29], [35], [45], or
heuristics [53].

Beside component-based approaches, multi-orientation
models are relevant to current work. Here, local pose-specific
clusters are established, followed by the training of specialized
classifiers for each subspace. The final decision of the classifier
ensemble involves maximum selection [57], trajectory-based
data association [59], shape-based combination [11], [19], or a
fusion classifier [46].

A recent trend in the community involves the combination
of multiple features or modalities, e.g., intensity, depth. and
motion. While some approaches utilize combinations on the
module level [2], [12], [13], [19], [37], [47], others integrate
multiple information sources directly into the pattern classifica-
tion step [5], [9], [40], [43], [44], [49], [51]–[53], [56], [58].

To the best of our knowledge, our work in [9] presented the
first use of appearance, motion, and stereo features for pedes-
trian classification. A similar approach was recently presented

in [52]. Some approaches combine features in the intensity do-
main using a boosted cascade classifier [58] or multiple kernel
learning [49]. One approach combines HOG, covariance, and
edgelet features in the intensity domain into a boosted heteroge-
nous cascade classifier with an explicit optimization with re-
gard to runtime [58]. Others integrate intensity and flow fea-
tures by boosting [51], [56] or by concatenating all features into
a single feature vector which is then passed to a single classi-
fier [5], [51], [56]. The work in [51] was recently extended to
additionally include depth features [52]. A joint feature space
approach to combine HOG and LBP features was used in [53].
[44] presents the integration of HOG features, co-occurrence
features and color frequency descriptors into a very high-di-
mensional 170 000 dimensions joint feature space in which
classical machine learning approaches are intractable. Hence,
partial least squares is applied to project the features into a sub-
space with lower dimensionality which facilitates robust classi-
fier learning. Boosting approaches require mapping the multi-
dimensional features to a single dimension, either by applying
projections [58] or treating each dimension as an individual
feature [56]. An alternative is the use of more complex weak
learners that operate in a multidimensional space, e.g., support
vector machines, [60].

In contrast, [5], [9], [40], and [43] utilize fusion on the clas-
sifier level by training a specialized classifier for each cue. The
work in [5] and [9] use a single feature (HOG) in two (intensity
and depth) and three different modalities (intensity, depth, and
motion), respectively. The work in [40] involves a combination
of two features (HOG and LRF) with a single modality (inten-
sity). Finally, the work in [43] presents a classifier-level com-
bination of two features, where each feature operates in a dif-
ferent modality (HOG/intensity and LRF/depth). Classifier fu-
sion is done using fuzzy integration [40], simple classifier com-
bination rules [43], or a Mixture-of-Experts framework [5], [9],
[24]. Our work in [9], [11], and [43] provides the foundation for
this paper.

III. OVERVIEW AND CONTRIBUTIONS

Our Mixture-of-Experts framework [24] for pedestrian clas-
sification combines four modalities (shape, intensity, depth,
and motion) and three features (Chamfer distance, HOG, and
LBP). We follow a multilevel approach by utilizing expert
classifiers on pose, modality, and feature levels; see Fig. 1(a).
The local experts are integrated in terms of a probabilistic
pose-specific model based on fuzzy view-related clustering and
associated sample-dependent cluster priors. view-related
models, specific to fuzzy clusters , are trained in an off-line
step to discriminate between pedestrians and nonpedestrians.
These models consist of sample-dependent cluster priors and
multilevel (multicue/multifeature) expert classifiers. In the
online application phase, cluster priors are computed using
shape matching and used to fuse the multilevel expert classi-
fiers to a combined decision; see Fig. 1(b). Details are given in
Section IV.

The main contribution of this paper is the aforementioned
pose-specific multilevel Mixture-of-Experts framework for
pedestrian classification, which breaks down the complex clas-
sification problem into better manageable subproblems. To our
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Fig. 1. Framework overview. (a) Multilevel object representation comprising Mixture-of-Experts on pose, �� �, modality, �� �, and feature levels �� �. (b)�
view-related models specific to fuzzy clusters � are used for pedestrian classification. The models consist of sample-dependent cluster priors and multicue/feature
discriminative experts which are learned from pedestrian (class � ) and nonpedestrian (class � ) samples �.

knowledge, this work represents the first integration of shape,
intensity, depth and motion as features into a pattern classifica-
tion framework. We observed that the same pedestrians appear
with a different level of saliency in the gray-level intensity,
depth, and motion images. This motivates our multimodality
fusion approach, to benefit from the strengths of the individual
cues. Our multicue dataset has been made public for evaluation
purposes, see Section V-A.

In this paper, we are not concerned with establishing the best
absolute performance given various state-of-the-art pedestrian
classifiers. We refer the reader to recently proposed systems and
benchmark studies, e.g., [4], [7], [10], [20], [23], [48], [50], [52],
[57], [60]. Rather, our aim is to demonstrate the relative perfor-
mance gain resulting from the proposed multilevel approach,
exemplified using state-of-the-art feature sets and classifiers in
our experiments. The proposed framework is independent of
the actual feature sets and classifiers used. The experiments in
this paper are designed to stimulate further research and pro-
vide an accessible baseline—we use publicly available data and
software implementations wherever possible—to which the sci-
entific community can benchmark additional feature-classifier
combinations.

Our approach has a number of advantages compared to fu-
sion approaches using a joint feature space, e.g., [44], [53],
[56]. First, our individual expert classifiers operate on a local
lower-dimensional feature subspace and are less prone to over-
fitting effects, given an adequate number of training samples.
We do not need to apply dimensionality reduction techniques,
e.g., [44], to robustly train our classifiers. Compared to multifea-
ture boosting approaches, we also do not require techniques to
map the multidimensional features to a single dimension, e.g.,
through projection [58] or selection of 1-D features [56].

Second, our Mixture-of-Experts framework alleviates prac-
tical problems arising from the use of large and high-dimen-
sional datasets in pattern classification. Some authors reported
that classical machine learning techniques do not scale up (on

practical terms) to the use of many tens of thousands of high-di-
mensional training samples, due to excessive memory require-
ments, e.g., nonlinear SVMs [10] or even linear SVMs [4], [44].
In contrast, the local expert classifiers in our framework are
trained on a lower dimensional subspace alleviating memory re-
quirements. As a result, more complex classifiers and/or a larger
amount of training samples can be used, which results in better
performance.

A third issue is training time, which can be of the order
of weeks on current hardware, particularly for boosting ap-
proaches, e.g., [10], [56], [58]. In our approach, training times
are usually faster, given the lower dimensionality and inherent
parallelism of training multiple local experts independently at
the same time. Note, that the expert classifiers used in our ex-
periments did not require more than one hour for each training
run.

Finally, since our expert classifiers are independent from each
other, they are not required to use exactly the same dataset for
training. Given that most recently published datasets include
samples from the intensity domain only [7], [10], [36], our ap-
proach could make maximum use of all available samples. For
evaluation purposes, we utilize the same data samples for each
cue/feature in our experiments to eliminate effects arising from
imbalanced data.

This paper goes beyond our earlier work in [9], [11], and
[43]. In [9], we focus on occlusion handling, whereas the main
contribution of [11] is orientation estimation. In [43], we ad-
dress intensity and depth based pedestrian classification, but
take neither pose-specific Mixture-of-Experts nor motion-based
features into account.

The remainder of this paper is structured as follows. In
Section IV, our multilevel Mixture-of-Experts framework is
introduced. Section V presents our dataset and experimental
setup. In Section VI, we experimentally evaluate our approach,
followed by a discussion in Section VII. We conclude in
Section VIII.
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Fig. 2. (a) Average gradient magnitude of all pedestrian training samples for
intensity, depth, and motion (left to right). (b) A difficult-to-recognize (low-con-
trast) pedestrian in the intensity domain can be very salient in other modalities.

IV. MULTILEVEL MIXTURE-OF-EXPERTS

A. Object Representation

Input to our framework is a training set of pedestrian
and nonpedestrian samples . Each sample

consists of different modalities .
In each modality , a sample is represented in
terms of features : .

In this work, we consider different modalities, i.e.,
gray-level image intensity , dense depth information via
stereo vision [22] and dense optical flow [54]. We
treat and similarly to gray-level intensity images , in
that both depth and motion cues are represented as images,
where pixel values encode distance from the camera and hori-
zontal optical flow between two temporally aligned images.

Dense stereo provides information for most image areas,
apart from regions which are visible only by one camera (stereo
shadow). Spatial features can be based on either depth (in
meters) or disparity (in pixels). Both are inversely propor-
tional, given the camera geometry with focal length and the
distance between the two cameras :

at pixel (1)

Objects in the scene have similar foreground/background gra-
dients in depth space, irrespective of their location relative to the
camera. In disparity space however, such gradients are larger,
the closer the object is to the camera. To remove this variability,
we derive spatial features from depth instead of disparity.

In case of optical flow, we only consider the horizontal
component of flow vectors, to alleviate effects introduced
from a moving camera with a significant amount of changes
in pitch, e.g., a vehicle-mounted camera. Longitudinal camera
motion also induces optical flow. We do not compensate for the
ego-motion of the camera, since we are only interested in local
differences in flow between a pedestrian and the environment.
Besides, robust ego-motion compensation is a rather difficult
task. As a positive side-effect, static pedestrians do not pose a
problem in combination with a moving camera.

A visual inspection of the intensity versus depth and flow im-
ages in Figs. 2 and 3 reveals that pedestrians have distinct con-
tours and textures in each modality. Fig. 2(a) shows the average
gradient magnitude of all pedestrian training samples for each
modality. In intensity images, lower-body features (shape and
appearance of legs) are the most significant features of a pedes-
trian (see results of part-based approaches, e.g., [35]). There is
significant texture on the pedestrian due to different clothing.

Fig. 3. Pedestrian and nonpedestrian samples in our dataset. In depth images,
darker colors denote closer distances. Note that the background (large depth
values) has been faded out for visibility. Optical flow images depict the hori-
zontal component of flow vectors. Medium red colors denote close to zero flow,
and darker and brighter colors indicate stronger motion (to the left and to the
right, respectively).

In the depth image, the upper-body area has dominant fore-
ground/background gradients and is particularly characteristic
for a pedestrian. The depth texture on the pedestrian is fairly
uniform, given that areas corresponding to the pedestrian are
approximately in the same distance from the camera. Pedes-
trian gradients in flow images are particularly strong around
the upper body and torso contours, resulting from motion dis-
continuities between the (uniformly moving) pedestrian and the
background. Similar to the depth image, the pedestrian upper
body area is fairly homogenous due to uniform pedestrian mo-
tion. Legs move nonrigidly and less uniform than the rest of the
pedestrian body. As a result, the lower body area is more blurred
and less significant in the average gradient image.

The various salient regions in intensity, depth, and flow
images motivate our use of fusion approaches between
those modalities to benefit from the individual strengths, see
Section IV-C. A characteristic example is shown in Fig. 2(b). A
pedestrian sample which is difficult to classify in the intensity
domain due to low contrast may appear very salient in the depth
and motion modalities. This highlights the complementary
aspect of different modalities.

In our experiments, we consider features per modality,
that is, HOG features [4] and LBP features [39]. The motivation
for this choice is twofold. First, recent studies have shown that
HOG and LBP features are highly complementary regarding
their sensitivity to noisy background edges which are common
in cluttered backgrounds [53]. Second, despite the vast amount
of features developed in recent years, HOG and LBP are still
among the best features around [7], [10], [53]. Detailed param-
eterization of our feature set is given in Section V-B.

Associated with each sample is a class label , ( for
the pedestrian and for the nonpedestrian class), as well as a

-dimensional cluster membership vector , with
and . defines the fuzzy membership to a set of

clusters , which relate to the similarity in appearance to
a certain view of a pedestrian. Note that the same also applies
to nonpedestrian training samples, where the image structure
resembles a certain pedestrian view. Our definition of cluster
membership is given in Section V-A.
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B. Pedestrian Classification

For pedestrian classification, our goal is to determine the class
label of a previously unseen sample . We make a Bayesian
decision and assign to the class with highest posterior prob-
ability

(2)

We decompose , the posterior probability that a
given sample is a pedestrian, in terms of the clusters as

(3)

(4)

In this formulation, represents a sample-de-
pendent cluster membership prior for . We approximate

using a sample-dependent gating function ,
with and , as defined in (15),
in Section IV-D.

represents the cluster-specific probability that
a given sample is a pedestrian. Instead of explicitly com-
puting , we utilize an approximation given by a
set of discriminative models . The classifier outputs
can be seen as approximation of the cluster-specific posterior
probabilities .

C. Multimodality/Multifeature Expert Classifiers

Given our pose-specific Mixture-of-Experts formulation (4),
we model the pose-specific expert classifiers in terms
of our multimodality dataset (intensity, depth, and flow). We
extend the Mixture-of-Experts formulation by introducing in-
dividual classifiers for each modality

(5)

In this formulation, denotes a local expert classifier
for the th fuzzy pose cluster, which is represented in terms of
the th modality. represents a pose- and modality-depen-
dent weight.

Within each modality, we further introduce another level of
expert classifiers, in that multiple feature sets are considered.
Following a similar Mixture-of-Experts principle, is
given by

(6)

represents a pose-, modality-, and feature-specific
expert classifier with an associated weight .

Plugging (5) and (6) into (4), we approximate , the
posterior probability that a given sample is a pedestrian, using
our multilevel Mixture-of-Experts model as

(7)

(8)

(9)

and (10)

As expert classifiers , we use pattern classifiers which
are learned on the training set using data from the corresponding
modality/feature only. Given fuzzy pose clusters, modal-
ities, and features, we train classifiers on
the full training set to discriminate between the pedestrian
and the nonpedestrian class. For each training sample , the
fuzzy cluster membership vector is used as a sample-depen-
dent weight during training.

In principle, the proposed framework is independent from
the actual discriminative models used [10]. We only require ex-
ample-dependent weights during training and that the classifier
outputs (decision value) relate to an estimate of posterior proba-
bility. For neural networks, example-dependent weights are in-
corporated using a weighted random sampling step to select the
examples that are presented to the neural network during each
learning iteration. In case of support vector machines, the ap-
proach of [3] can be used. In the limit of infinite data, the out-
puts of many state-of-the-art classifiers can be converted to an
estimate of posterior probabilities [25], [42]. We use this in our
experiments.

We compute , the weights to the individual expert clas-
sifiers, by interpreting [see (10)] as a
dot-product in the -dimensional space of expert classifier
posterior probabilities. To determine the weights , we train
a linear support vector machine (linSVM) in the expert pos-
terior space. With the linSVM bias term constrained to be zero
[14], its decision function equals a dot-product

(11)

(12)

Inserting (11) into (10) then yields

(13)
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D. Sample-Dependent Cluster Priors

Prior probabilities for membership to a certain cluster of
an unseen sample , , are introduced in (3). Note, that
this prior is not a fixed prior, but depends on the sample itself.
As such, it represents the gating of the proposed Mixture-of-
Experts architecture.

At this point, information from other cues besides texture (on
which the discriminative models are based) can be incorpo-
rated into our framework in a probabilistic manner. We propose
to model cluster priors using a Bayesian approach as

(14)

Cluster conditional-likelihoods involve the repre-
sentation of in terms of a set of features, followed by likeli-
hood estimation. Possible cues include motion-based features,
i.e., optical flow [5], or shape [19]. Likelihood estimation can
be performed via histogramming on training data or fitting para-
metric models [19].

Here, we utilize shape cues to compute priors for
the membership of a sample to a certain cluster : within
each cluster , a discrete set of shape templates specific to
is matched to the sample . Shape matching involves correla-
tion of the shape templates with a distance-transformed version
of . Let denote the residual shape distance between
the best matching shape in cluster and sample . By repre-
senting in terms of and using (14), sample-dependent
shape-based priors for cluster are approximated as

(15)

Priors are assumed equal and cluster-conditionals are
modeled as exponential distributions of

(16)

Parameters of the exponential distributions are learned via
maximum likelihood on the training set.

V. EXPERIMENTAL SETUP

A. Dataset and Evaluation Methodology

The proposed multilevel Mixture-of-Experts framework is
tested in experiments on pedestrian classification. We choose
the application of pedestrian classification in complex urban
traffic as an experimental testbed, since it is arguably one of
the most challenging problems around. Because we require
multicue (intensity, dense stereo, dense optical flow) training
and test samples, we cannot use most established datasets for
benchmarking, e.g., [4], [7], [10], [36]. The dataset introduced
by [13] includes appearance and binocular image data, however
actual depth maps and optical flow are not provided by the
authors. While depth maps and flow images can be computed

by other authors using this data, it is unclear, to what extent
observed performance differences may result from different
algorithms used to compute depth and motion data. The authors
of [5], for example, demonstrated that the false positives at
equal detection rate levels could be reduced by a factor of three,
simply by exchanging the method of optical flow estimation.
Moreover, the more sophisticated and visually better flow esti-
mator resulted in worse classification performance [5]. Further,
the dataset of [13] lacks realism given our experimental setup
(urban traffic), since it has been captured at walking speeds on
urban sidewalks.

Our experiments involve the recently introduced Daimler
Multi-Cue, Occluded Pedestrian Classification Benchmark [9]
(we do not use the partially occluded pedestrians additionally
present in this dataset) which is publicly available to noncom-
mercial entities for research purposes.1 This dataset is captured
from a moving vehicle in complex urban traffic. We provide
gray-level intensity data, as well as precomputed dense depth
maps and dense optical flow images, to eliminate any effects
arising from differences in the computation of the latter.

Recently, an independently developed approach combining
intensity, motion, and depth was presented in [52]. However, the
dataset used in [52] is only partly publicly available (the training
data is not public).

Performance evaluation of pedestrian classifiers can be
performed using a per-image measure (detection context) or a
per-window measure (classification context). Dollar et al. [7]
consider the per-window evaluation for sliding-window detec-
tors flawed, since auxiliary effects, such as grid granularity or
nonmaximum suppression, are not taken into account. They
mention as an additional pitfall the use of incorrectly cropped
samples which skews performance due to boundary artifacts.
We agree with Dollar et al. [7] that per-image evaluation should
be the preferred methodology for the evaluation of (monocular)
sliding-window or interest-point-based detectors [10], [23].
Images should be cropped in such a way to avoid boundary
artifacts.

However, we do not consider the per-window evaluation
measure as inherently flawed. Both evaluation setups have
their justification, depending on the application context. Most
real-world systems integrate several modules; they do not
follow a brute-force sliding-window detection scheme, but use
a preprocessing step to determine initial pedestrian location
hypotheses for both enhanced performance and computational
efficiency, e.g., using background subtraction [34], shape [12],
[19], stereo [13], [19], [37], motion [12], or nonvision sensors,
such as radar or lidar [16]. As a result, the remaining object
hypotheses are not random subwindows, but contain a mean-
ingful structure that resembles pedestrians in some aspect.
Further, the number of hypotheses per image is greatly reduced
(up to a factor of 10 000) compared with dense subwindow
scanning, resulting in a more even ratio between pedestrian and
nonpedestrian samples. In this application context, per-window
evaluation should be the preferred method, since it more closely
resembles the actual system setup.

1[Online]. Available: http://www.science.uva.nl/research/isla/down-
loads/pedestrians/index.html
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TABLE I
TRAINING AND TEST SET STATISTICS

Our training and test samples consist of manually labeled
pedestrian and nonpedestrian bounding boxes in images cap-
tured from a vehicle-mounted calibrated stereo camera rig in an
urban environment. For each manually labeled pedestrian, we
create additional samples by geometric jittering. Nonpedestrian
samples result from a pedestrian shape-detection preprocessing
step [18] with a relaxed threshold setting (to not include largely
uniform image patches, such as road surface or sky), as well as
ground-plane constraints and prior knowledge about pedestrian
geometry, i.e., containing a bias towards more ”difficult” pat-
terns, weakly resembling pedestrians in geometry and structure.
Note that this selection strategy has already been performed for
both the provided training and test data, i.e., it is not required
to be implemented to reproduce and compare to the results pre-
sented in this paper.

Training and test samples have a resolution of 48 96 pixels
with a 12-pixel border around the pedestrians; there is no arti-
ficial extension of the border (padding, mirroring) in our data.
Dense stereo is computed using the semi-global matching algo-
rithm [22]. To compute dense optical flow, we use the method
of [54]. See Table I and Fig. 3 for an overview of the dataset.

We consider view-related clusters , roughly corre-
sponding to similarity in appearance to front, left, back and right
views of pedestrians. We use the approximated cluster prior
probability (see Section IV-D) as cluster membership weights
for training

(17)

To compute , a set of 10 946 shape templates corre-
sponding to clusters is used according to the methods
outlined in Section IV-D.

B. Feature Extraction and Classification

Regarding features for our multicue classifiers, we choose
histograms of oriented gradients (HOG) [4] and cell-structured
local binary patterns (LBP) with uniformity constraints [39],
[53] out of many possible feature sets [7], [10], [36]. The
motivation for this choice is twofold. First, HOG and LBP
are complementary in the sense that HOGs are gradient-based
whereas LBPs are texture-based features. HOGs are sensitive
to noisy background edges which often occur in cluttered back-
grounds. LBPs can filter out background noise using uniformity
constraints, see [53]. Second, HOG and LBP features are still
among the best performing (and most popular) feature sets
available [7], [10], [53].

We follow [4] and compute histograms of oriented gradients
with nine orientation bins and 8 8 pixel cells, accumulated to
overlapping 16 16 pixel blocks with a spatial shift of eight
pixels. HOG features are computed using the implementation
provided by [4]. To compute cell-structured LBPs, we adopt the

TABLE II
EXPERT WEIGHTS � FOR FEATURES AND MODALITIES, ESTIMATED BY A

LINEAR SVM ON THE TRAINING SET

terminology and method of [53] and compute L1-sqrt normal-
ized features, using 8 8 pixel cells and a maximum
number of 0–1 transitions of 2. The resulting feature dimension-
ality is 1980 for HOG and 4248 for LBP. Note that the same
HOG and LBP feature set is extracted from intensity, dense
stereo and dense flow images.

For classification, we employ multilayer perceptrons (MLP)
with one hidden layer consisting of eight neurons with sig-
moidal transfer functions, trained stochastically using the
online error back-propagation algorithm. We utilize the FANN
library for MLP training [38]. Compared with the popular
linSVMs, MLPs provide nonlinear decision boundaries which
usually improve performance, see [36]. The training of non-
linear support vector machines was practically infeasible, given
our large datasets.

Expert classifier weights [see (10) and (11)] are com-
puted using the linear SVM approach given in Section IV-C,
applied to the training set. We utilize the LIBLINEAR library
for linear SVM training [14]. The actual weights for individual
features and modalities are listed in Table II.

We reiterate that the proposed framework is independent from
the actual feature set and discriminative models used. We en-
courage the scientific community to present results of other fea-
ture-classifier combinations on our multicue data.

VI. EXPERIMENTS

Our experiments are designed to evaluate the different levels
of our proposed Mixture-of-Experts framework [see Fig. 1(a)],
both in isolation and in combination, to quantify the contribu-
tion of the individual cues to the overall performance. After pre-
senting the experimental results for pedestrian classification in
terms of ROC performance, we analyze the correlation of clas-
sifier outputs in different modalities/features to gain further in-
sight into the observed performance.

A. Pose-Level Mixture-of-Experts

In our first experiment, we evaluate the benefit of our Mix-
ture-of-Experts architecture on pose-level only. For that, we
compare the proposed pose-specific mixture architecture to
single “monolithic” classifiers trained on the whole dataset
irrespective of view. We do not consider multimodality or
multifeature classifiers yet. For this experiment, we utilize
HOG and LBP features separately, operating in the intensity
domain only. Regarding classifiers, we compare linear support
vector machines (linSVM) to multilayer perceptrons (MLPs).
Note that the monolithic HOG/linSVM approach corresponds
to the method proposed by Dalal and Triggs [4]. Results are
shown in Fig. 4(a) for HOG and in Fig. 4(b) for LBP features.

Irrespective of the employed feature set, the pose-level mix-
ture classifiers perform better than the corresponding monolithic
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Fig. 4. Pose-level Mixture-of-Experts versus monolithic classifier. (a) HOG features in intensity modality. (b) LBP features in intensity modality.

Fig. 5. Modality-level Mixture-of-Experts. Individual classification performance of (a) HOG and (b) LBP features in intensity, depth, and motion modality. Com-
bined classification performance of (c) HOG and (d) LBP features in intensity, depth, and motion modality. Note the different scaling on the �-axis.

classifiers. The decomposition of the problem into view-related
subparts simplifies the training of the expert classifiers, since
a large part of the observable variation in the samples is al-
ready accounted for. Classification performance and robustness
is increased by a combined decision of the experts. The per-
formance benefit for the pose-level mixture classifier is up to
a factor of two in reduction of false positives at the same de-
tection rate. Further, multilayer perceptrons outperform linear
support vector machines, because of their nonlinearities in de-
cision space. Except for some experiments in Section VI-E, we
utilize pose-level Mixture-of-Experts classification throughout
the following experiments.

B. Modality-Level Mixture-of-Experts

In our second experiment, we evaluate the performance
of modality-level classifiers, as presented in Section IV-C,
compared with intensity-only classifiers. Pose-level mixtures
are also used, that is, the first two levels of our framework
[see Fig. 1(a)] are in place in this experiment. Performance is
evaluated for both HOG and LBP features individually. In each
feature-space, we first evaluate all modalities separately and
incrementally add depth and motion to the baseline intensity
cue. Results are shown in Fig. 5(a) and (c) for HOG and in
Fig. 5(b) and (d) for LBP features.
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The relative performance of classifiers trained on intensity,
depth and motion features only is consistent across the two
different feature spaces, cf. Fig. 5(a) (HOG) versus Fig. 5(b)
(LBP). Classifiers in the intensity modality have the best per-
formance, by a large margin. In depth and motion modalities,
performance is similar for both feature sets with depth features
performing better then motion features at higher false positive
rates and worse at lower false positive rates. Note, that these
performance relations are also apparent in the individual expert
classifier weights; see Table II.

Fig. 5(c) and (d) show the effect of incrementally adding
depth and motion to the intensity modality. Here, the best per-
formance is reached when all modalities are taken into account.
However, the observable performance boosts are different for
HOG compared with LBP features. The HOG classifier using
intensity, depth, and motion has approximately a factor of four
less false positives than a comparable HOG classifier using in-
tensity only [see Fig. 5(c)]. From Fig. 5(d) we observe, that in
the case of LBP features, the performance boost resulting from
utilizing all modalities versus intensity-only is approximately
a factor of 12 in reduction of false positives at equal detection
rates.

C. Feature-Level Mixture-of-Experts

Similar to analyzing the effect of modality-level Mix-
ture-of-Experts , we now evaluate the effect of feature-level
Mixture-of-Experts. To that extent, we combine pose-level
Mixture-of-Experts with feature-level Mixture-of-Experts and
evaluate the performance of the multifeature approach in all
three modalities, i.e., intensity, depth, motion, individually.
Recalling our framework architecture [see Fig. 1(a)], this
corresponds to having levels 1 (pose) and 3 (features) in place.
Results are given in Fig. 6(a) (intensity), Fig. 6(b) (depth), and
Fig. 6(c) (motion).

In all modalities, one can observe that combining HOG and
LBP improves performance over using both features individu-
ally. The largest performance boost coming from the feature-
level Mixture-of-Experts exists in the intensity modality. Here,
the combined HOG+LBP classifier has up to a factor of four
less false positives than the HOG classifier, which in turn out-
performs the LBP classifier at higher detection rates. In depth
and motion modalities, the corresponding performance boosts
amount to factors of 2 (motion) and 1.5 (depth) at equal de-
tection rate levels. Compared with the performance improve-
ment obtained by combining different modalities, as shown in
Section VI-B, the effect of feature-level Mixture-of-Experts is
less pronounced, but still significant.

D. Multilevel Mixture-of-Experts

We now evaluate the performance of our full multilevel
Mixture-of-Experts framework combining pose-, modality-,
and feature-level expert classifiers. As baseline performance,
the monolithic (i.e., no delineation of classifiers at pose-level)
HOG/linSVM approach of [4], as well the best performing
variants from the previous two experiments are utilized:
modality-level Mixture-of-Experts using LBP/MLP in inten-
sity, depth and motion (see Section VI-B) as well as feature-level

Fig. 6. Feature-level Mixture-of-Experts. Individual classification perfor-
mance of HOG, LBP, and HOG+LBP in (a) intensity, (b) depth, and (c) motion
modality. Note the different scaling on the �-axis.

Mixture-of-Experts using HOG+LBP Mixture-of-Experts in
intensity domain only (see Section VI-C).

ROC performance is given in Fig. 7. We observe that our com-
bined multilevel Mixture-of-Experts approach significantly out-
performs both variants using either modality-level or feature-
level fusion, as well as the state-of-the-art monolithic HOG/
linSVM approach [4]. To quantify performance, Table III lists
the false positive rates of all approaches shown in Fig. 7 using a
detection rate of 90% as a common reference point. We further
indicate the resulting reduction in false positives, in comparison
to the monolithic HOG/linSVM classifier as baseline.

If we combine experts on pose-level with experts on feature-
level (HOG/MLP + LBP/MLP, intensity modality), we achieve
a reduction in false positive of more than a factor of 6 over the
Dalal and Triggs HOG/linSVM approach. The use of pose-level
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Fig. 7. Performance overview. (a) Monolithic HOG classifier in intensity domain, best feature-level MoE (HOG+LBP, intensity), best modality-level MoE (LBP,
intensity+depth+motion), multilevel MoE (HOG+LBP, intensity+depth+motion). (b) Logarithmic plot of (a), focusing on low false-positive rates.

TABLE III
PERFORMANCE OF APPROACHES IN FIG. 7 USING 90% DETECTION RATE AS A

COMMON REFERENCE POINT

TABLE IV
CORRELATION OF CLASSIFIER OUTPUTS IN (A) DIFFERENT MODALITIES AND

(B) DIFFERENT FEATURES

and modality-level experts (LBP/MLP, intensity+depth+motion
modalities) reduces false positives by more than a factor of 13
compared with the HOG/linSVM baseline. Our full multilevel
Mixture-of-Experts approach (HOG/MLP + LBP/MLP, inten-
sity+depth+motion modalities) further boost performance up to
a reduction in false positives by a factor of 42.

The results clearly show the benefit of our integrated
multilevel architecture. Additionally, we observe that the com-
bination of different modalities attributes more to the overall
performance, than the use of multiple features within a single
modality. Given that most recent research has focused on de-
veloping yet another feature to be used in the intensity domain,
multicue classification approaches seem to be a promising di-
rection for future research in the domain of object classification
to boost overall performance.

To gain further insight, we compute the correlation of classi-
fier outputs (decision values) for the individual modality/feature
expert classifiers, computed for pedestrian and nonpedestrian
samples individually and then averaged over the two classes, see
Table IV. The correlation analysis shows, that classifier outputs
are far less correlated across different modalities (Table IV-B)
than across different features (Table IV-A). Here, the less corre-
lated two modalities/features are, the larger the benefits obtained
in classification performance (see Figs. 5 and 6).

E. Classifier Fusion

In our final experiments, we compare our multilevel Mix-
ture-of-Experts fusion approach to other techniques for clas-
sifier fusion. First, we analyze fusion approaches involving a
combination of different classifiers in other ways than our Mix-
ture-of-Experts framework. Second, we compare our approach
against a single classifier using a joint feature space which con-
sists of all features in all modalities -normalized and concate-
nated into a single feature vector [56]. Given our feature setup
as presented in Section V-B, the total dimensionality of the joint
feature space is 18 684. For comparison, the performance of the
Dalal and Triggs HOG/linSVM baseline [4] is also given. Re-
sults are shown in Fig. 8(a) for the multiclassifier fusion and in
Fig. 8(b) for the joint space fusion approaches.

The multiclassifier fusion approaches (entitled “Uniform
Sum”, “Product” and “Sugeno Fuzzy Integral”) involve in-
dividual classifiers for each feature (HOG and LBP) and
modality (intensity, depth and motion). Altogether, there are
six classifiers to be combined, using the sum and product of the
individual decision values [26], as well as a fuzzy integration
using Sugeno integrals [40]. Fuzzy integration involves treating
the individual classifier outputs as a fuzzy set and aggregating
them into a single value using the Sugeno integral. While
those approaches improve performance over the state-of-the-art
Dalal and Triggs HOG/linSVM classifier [4], our multilevel
Mixture-of-Experts classifier has a much better performance.
This clearly shows the benefit of gating on pose-level [see (4)]
and the learned classifier combination weights in (12).

In terms of joint space approaches, we train both a MLP
and a linSVM in the enlarged 18 684-dimensional joint feature
space (training a nonlinear SVM was not feasible given our
large dataset). While one could expect the MLP to improve
performance over the linSVM, due to the nonlinear decision
boundary, our results paint a different performance picture. The
MLP classifier is outperformed by the linSVM by a significant
margin. We attribute this to the so-called “curse of dimension-
ality,” e.g., [8], which relates the number of free parameters
in a classifier (as given by feature space dimensionality) to
the amount of available training samples. As a rule of thumb,
the number of training samples should be a factor-of-10 larger
than the number of free parameters to be estimated during
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Fig. 8. Performance of different classifier fusion techniques. (a) Multiclassifier fusion. (b) Joint feature space with single classifiers.

training [8]. This rule is severely violated in case of the MLP
in the 18 684-dimensional joint feature space with 149 489 free
parameters and 84 577 training samples. The linSVM can better
cope with the higher dimensionality given its maximum-margin
constraint at the core which is less susceptible to overfitting
effects in high-dimensional spaces. Still, our multilevel Mix-
ture-of-Experts framework using MLPs as expert classifiers
outperforms the joint space linSVM. We can afford to use
more complex subclassifiers in our model, since each MLP is
an expert in a lower dimensional modality/feature subspace,
weighted by the contribution of the shape cues.

VII. DISCUSSION

We obtained a significant boost in pedestrian classification
performance from the use of multiple modalities and features
in a Mixture-of-Experts setting. Our experiments show that
the largest performance gain stems from the combination of
intensity features with depth and motion features. We expect
the use of additional modalities, e.g., far-infrared (FIR) [31], to
further increase performance. Multimodality classifiers partic-
ularly outperform multifeature classifiers in a single modality.
However, modalities and features are orthogonal, so that a
combined multimodality/multifeature approach can further
boost performance.

In this work, we did not heavily optimize the feature sets
with regard to the different modalities. Instead, we transferred
general knowledge and experience from the behavior of fea-
tures and classifiers in the intensity domain to the depth and
motion domains. At this point, it is not clear if (and how)
additional modification and adaptation of the feature sets to
the different characteristics found in depth and motion data
(see Section IV-A) can further improve performance. While the
HOG/MLP classifier outperforms the LBP/MLP classifier in all
modalities in our experiments, this may not be generally true.
See, for example, [43], where the relative order of feature/clas-
sifier performance reverses with respect to intensity and depth.

Orthogonal to the improvements presented in this paper are
benefits resulting from an increased training set [10], [36]. In the
intensity domain, feature-classifier combinations respond dif-
ferently to an increased training set (in both size and dimen-
sionality), e.g., in terms of classifier complexity, discriminative

power, practical feasibility and saturation effects [10], [36]. It is
currently unknown to what extent similar (or different) effects
are present for features and classifiers in other modalities.

Recent work analyzed the dependence of classification per-
formance and pedestrian image size (as a proxy for distance to
the camera) in the intensity domain [7]. Results show signif-
icant relative performance differences of the evaluated classi-
fiers across multiple scales. Similar effects may also be found
in depth and motion features, particularly since depth and mo-
tion measurements tend to get noisy at larger distances to the
camera. In case of stereo vision, the range of measurements is
further limited by the camera setup.

Certainly, more research is necessary to fully explore the ben-
efits of multimodality/multifeature classification. For that pur-
pose, we provide our multicue dataset not only as a means for
benchmarking but also to stimulate further research on the is-
sues mentioned above.

VIII. CONCLUSION

This paper presented a probabilistic multilevel Mix-
ture-of-Experts framework involving a view-related and
sample-dependent combination of multicue/multifeature
pedestrian classifiers. We use highly complementary Chamfer
distance, HOG, and LBP features that are extracted from
intensity, dense depth and dense flow data. The pose-specific
Mixture-of-Experts formulation, which divides the complex
pedestrian classification problem into better manageable sub-
problems, is feature- and classifier-independent, practically
feasible and does not suffer from overfitting effects in high-di-
mensional spaces.

Results show a significant performance boost of up to a factor
of 42 in reduction of false positives at constant detection rates
over a state-of-the-art intensity-only classifier using HOG fea-
tures and linear SVM classification. The observed performance
improvements stem both from the fuzzy subdivision of our data
in terms of pose and the combination of multiple features and
modalities. In our experiments, we identified the use of multiple
modalities as the most benefiting factor which is confirmed by
a correlation analysis. We make our multicue dataset publicly
available for benchmarking purposes and to stimulate further
research to address open issues with regard to multicue/multi-
feature classification.
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